WIP on aspect ratio detection

This commit is contained in:
Tamius Han 2024-10-19 16:04:20 +02:00
parent e2dac10501
commit 2736ac418f
5 changed files with 943 additions and 178 deletions

View File

@ -51,139 +51,156 @@ export interface CommandInterface {
export type SettingsReloadComponent = 'PlayerData' | 'VideoData';
export type SettingsReloadFlags = true | SettingsReloadComponent;
export interface AardSettings {
disabledReason: string, // if automatic aspect ratio has been disabled, show reason
allowedMisaligned: number, // top and bottom letterbox thickness can differ by this much.
// Any more and we don't adjust ar.
allowedArVariance: number, // amount by which old ar can differ from the new (1 = 100%)
timers: { // autodetection frequency
playing: number, // while playing
paused: number, // while paused
error: number, // after error
minimumTimeout: number,
tickrate: number, // 1 tick every this many milliseconds
},
autoDisable: { // settings for automatically disabling the extension
maxExecutionTime: number, // if execution time of main autodetect loop exceeds this many milliseconds,
// we disable it.
consecutiveTimeoutCount: number, // we only do it if it happens this many consecutive times
// FOR FUTURE USE
consecutiveArResets: number // if aspect ratio reverts immediately after AR change is applied, we disable everything
},
canvasDimensions: {
blackframeCanvas: { // smaller than sample canvas, blackframe canvas is used to recon for black frames
// it's not used to detect aspect ratio by itself, so it can be tiny af
width: number,
height: number,
},
sampleCanvas: { // size of image sample for detecting aspect ratio. Bigger size means more accurate results,
// at the expense of performance
width: number,
height: number,
},
},
// NOTE: Black Frame is currently not in use.
blackframe: {
sufficientColorVariance: number, // calculate difference between average intensity and pixel, for every pixel for every color
// component. Average intensity is normalized to where 0 is black and 1 is biggest value for
// that component. If sum of differences between normalized average intensity and normalized
// component varies more than this % between color components, we can afford to use less strict
// cumulative threshold.
cumulativeThresholdLax: number,
cumulativeThresholdStrict: number,// if we add values of all pixels together and get more than this, the frame is bright enough.
// (note: blackframe is 16x9 px -> 144px total. cumulative threshold can be reached fast)
blackPixelsCondition: number, // How much pixels must be black (1 all, 0 none) before we consider frame as black. Takes
// precedence over cumulative threshold: if blackPixelsCondition is met, the frame is dark
// regardless of whether cumulative threshold has been reached.
},
// Used by old aspect ratio detection algorithm. Pls remove.
blackbar: {
blackLevel: number, // everything darker than 10/255 across all RGB components is considered black by
// default. blackLevel can decrease if we detect darker black.
threshold: number, // if pixel is darker than the sum of black level and this value, we count it as black
// on 0-255. Needs to be fairly high (8 might not cut it) due to compression
// artifacts in the video itself
frameThreshold: number, // threshold, but when doing blackframe test
imageThreshold: number, // in order to detect pixel as "not black", the pixel must be brighter than
// the sum of black level, threshold and this value.
gradientThreshold: number, // When trying to determine thickness of the black bars, we take 2 values: position of
// the last pixel that's darker than our threshold, and position of the first pixel that's
// brighter than our image threshold. If positions are more than this many pixels apart,
// we assume we aren't looking at letterbox and thus don't correct the aspect ratio.
gradientSampleSize: number, // How far do we look to find the gradient
maxGradient: number, // if two neighboring pixels in gradientSampleSize differ by more than this, then we aren't
// looking at a gradient
gradientNegativeTreshold: number,
gradientMaxSD: number, // reserved for future use
antiGradientMode: AntiGradientMode
},
// Also not in use, probs.
variableBlackbarThresholdOptions: { // In case of poor bitrate videos, jpeg artifacts may cause us issues
// FOR FUTURE USE
enabled: boolean, // allow increasing blackbar threshold
disableArDetectOnMax: boolean, // disable autodetection when threshold goes over max blackbar threshold
maxBlackbarThreshold: number, // max threshold (don't increase past this)
thresholdStep: number, // when failing to set aspect ratio, increase threshold by this much
increaseAfterConsecutiveResets: number // increase if AR resets this many times in a row
},
blackLevels: {
defaultBlack: number, // By default, pixels darker than this are considered black.
// (If detection algorithm detects darker blacks, black is considered darkest detected pixel)
blackTolerance: number, // If pixel is more than this much brighter than blackLevel, it's considered not black
// It is not considered a valid image detection if gradient detection is enabled
imageDelta: number, // When gradient detection is enabled, pixels this much brighter than black skip gradient detection
}
sampling: {
edgePosition: number; // % of width (max 0.33). Pixels up to this far away from either edge may contain logo.
staticCols: number, // we take a column at [0-n]/n-th parts along the width and sample it
randomCols: number, // we add this many randomly selected columns to the static columns
staticRows: number, // forms grid with staticSampleCols. Determined in the same way. For black frame checks,
},
guardLine: { // all pixels on the guardline need to be black, or else we trigger AR recalculation
// (if AR fails to be recalculated, we reset AR)
enabled: boolean,
ignoreEdgeMargin: number, // we ignore anything that pokes over the black line this close to the edge
// (relative to width of the sample)
imageTestThreshold: number, // when testing for image, this much pixels must be over blackbarThreshold
edgeTolerancePx: number, // black edge violation is performed this far from reported 'last black pixel'
edgeTolerancePercent: null // unused. same as above, except use % of canvas height instead of pixels
},
arSwitchLimiter: { // to be implemented
switches: number, // we can switch this many times
period: number // per this period
},
// pls deprecate and move things used
edgeDetection: {
slopeTestWidth: number,
gradientTestSamples: number, // we check this many pixels below (or above) the suspected edge to check for gradient
gradientTestBlackThreshold: number, // if pixel in test sample is brighter than that, we aren't looking at gradient
gradientTestDeltaThreshold: number, // if delta between two adjacent pixels in gradient test exceeds this, it's not gradient
gradientTestMinDelta: number, // if last pixels of the test sample is less than this brighter than the first -> not gradient
sampleWidth: number, // we take a sample this wide for edge detection
detectionThreshold: number, // sample needs to have this many non-black pixels to be a valid edge
confirmationThreshold: number, //
singleSideConfirmationThreshold: number, // we need this much edges (out of all samples, not just edges) in order
// to confirm an edge in case there's no edges on top or bottom (other
// than logo, of course)
logoThreshold: number, // if edge candidate sits with count greater than this*all_samples, it can't be logo
// or watermark.
edgeTolerancePx?: number, // we check for black edge violation this far from detection point
edgeTolerancePercent?: number, // we check for black edge detection this % of height from detection point. unused
middleIgnoredArea: number, // we ignore this % of canvas height towards edges while detecting aspect ratios
minColsForSearch: number, // if we hit the edge of blackbars for all but this many columns (%-wise), we don't
// continue with search. It's pointless, because black edge is higher/lower than we
// are now. (NOTE: keep this less than 1 in case we implement logo detection)
},
pillarTest: {
ignoreThinPillarsPx: number, // ignore pillars that are less than this many pixels thick.
allowMisaligned: number // left and right edge can vary this much (%)
},
textLineTest: {
nonTextPulse: number, // if a single continuous pulse has this many non-black pixels, we aren't dealing
// with text. This value is relative to canvas width (%)
pulsesToConfirm: number, // this is a threshold to confirm we're seeing text.
pulsesToConfirmIfHalfBlack: number, // this is the threshold to confirm we're seeing text if longest black pulse
// is over 50% of the canvas width
testRowOffset: number // we test this % of height from detected edge
}
}
interface SettingsInterface {
_updateFlags?: {
requireReload?: SettingsReloadFlags,
forSite?: string
}
arDetect: {
disabledReason: string, // if automatic aspect ratio has been disabled, show reason
allowedMisaligned: number, // top and bottom letterbox thickness can differ by this much.
// Any more and we don't adjust ar.
allowedArVariance: number, // amount by which old ar can differ from the new (1 = 100%)
timers: { // autodetection frequency
playing: number, // while playing
paused: number, // while paused
error: number, // after error
minimumTimeout: number,
tickrate: number, // 1 tick every this many milliseconds
},
autoDisable: { // settings for automatically disabling the extension
maxExecutionTime: number, // if execution time of main autodetect loop exceeds this many milliseconds,
// we disable it.
consecutiveTimeoutCount: number, // we only do it if it happens this many consecutive times
// FOR FUTURE USE
consecutiveArResets: number // if aspect ratio reverts immediately after AR change is applied, we disable everything
},
canvasDimensions: {
blackframeCanvas: { // smaller than sample canvas, blackframe canvas is used to recon for black frames
// it's not used to detect aspect ratio by itself, so it can be tiny af
width: number,
height: number,
},
sampleCanvas: { // size of image sample for detecting aspect ratio. Bigger size means more accurate results,
// at the expense of performance
width: number,
height: number,
},
},
// samplingInterval: 10, // we sample at columns at (width/this) * [ 1 .. this - 1]
blackframe: {
sufficientColorVariance: number, // calculate difference between average intensity and pixel, for every pixel for every color
// component. Average intensity is normalized to where 0 is black and 1 is biggest value for
// that component. If sum of differences between normalized average intensity and normalized
// component varies more than this % between color components, we can afford to use less strict
// cumulative threshold.
cumulativeThresholdLax: number,
cumulativeThresholdStrict: number,// if we add values of all pixels together and get more than this, the frame is bright enough.
// (note: blackframe is 16x9 px -> 144px total. cumulative threshold can be reached fast)
blackPixelsCondition: number, // How much pixels must be black (1 all, 0 none) before we consider frame as black. Takes
// precedence over cumulative threshold: if blackPixelsCondition is met, the frame is dark
// regardless of whether cumulative threshold has been reached.
},
blackbar: {
blackLevel: number, // everything darker than 10/255 across all RGB components is considered black by
// default. blackLevel can decrease if we detect darker black.
threshold: number, // if pixel is darker than the sum of black level and this value, we count it as black
// on 0-255. Needs to be fairly high (8 might not cut it) due to compression
// artifacts in the video itself
frameThreshold: number, // threshold, but when doing blackframe test
imageThreshold: number, // in order to detect pixel as "not black", the pixel must be brighter than
// the sum of black level, threshold and this value.
gradientThreshold: number, // When trying to determine thickness of the black bars, we take 2 values: position of
// the last pixel that's darker than our threshold, and position of the first pixel that's
// brighter than our image threshold. If positions are more than this many pixels apart,
// we assume we aren't looking at letterbox and thus don't correct the aspect ratio.
gradientSampleSize: number, // How far do we look to find the gradient
maxGradient: number, // if two neighboring pixels in gradientSampleSize differ by more than this, then we aren't
// looking at a gradient
gradientNegativeTreshold: number,
gradientMaxSD: number, // reserved for future use
antiGradientMode: AntiGradientMode
},
variableBlackbarThresholdOptions: { // In case of poor bitrate videos, jpeg artifacts may cause us issues
// FOR FUTURE USE
enabled: boolean, // allow increasing blackbar threshold
disableArDetectOnMax: boolean, // disable autodetection when threshold goes over max blackbar threshold
maxBlackbarThreshold: number, // max threshold (don't increase past this)
thresholdStep: number, // when failing to set aspect ratio, increase threshold by this much
increaseAfterConsecutiveResets: number // increase if AR resets this many times in a row
},
sampling: {
staticCols: number, // we take a column at [0-n]/n-th parts along the width and sample it
randomCols: number, // we add this many randomly selected columns to the static columns
staticRows: number, // forms grid with staticSampleCols. Determined in the same way. For black frame checks
},
guardLine: { // all pixels on the guardline need to be black, or else we trigger AR recalculation
// (if AR fails to be recalculated, we reset AR)
enabled: boolean,
ignoreEdgeMargin: number, // we ignore anything that pokes over the black line this close to the edge
// (relative to width of the sample)
imageTestThreshold: number, // when testing for image, this much pixels must be over blackbarThreshold
edgeTolerancePx: number, // black edge violation is performed this far from reported 'last black pixel'
edgeTolerancePercent: null // unused. same as above, except use % of canvas height instead of pixels
},
fallbackMode: {
enabled: boolean,
safetyBorderPx: number, // determines the thickness of safety border in fallback mode
noTriggerZonePx: number // if we detect edge less than this many pixels thick, we don't correct.
},
arSwitchLimiter: { // to be implemented
switches: number, // we can switch this many times
period: number // per this period
},
edgeDetection: {
sampleWidth: number, // we take a sample this wide for edge detection
detectionThreshold: number, // sample needs to have this many non-black pixels to be a valid edge
confirmationThreshold: number, //
singleSideConfirmationThreshold: number, // we need this much edges (out of all samples, not just edges) in order
// to confirm an edge in case there's no edges on top or bottom (other
// than logo, of course)
logoThreshold: number, // if edge candidate sits with count greater than this*all_samples, it can't be logo
// or watermark.
edgeTolerancePx?: number, // we check for black edge violation this far from detection point
edgeTolerancePercent?: number, // we check for black edge detection this % of height from detection point. unused
middleIgnoredArea: number, // we ignore this % of canvas height towards edges while detecting aspect ratios
minColsForSearch: number, // if we hit the edge of blackbars for all but this many columns (%-wise), we don't
// continue with search. It's pointless, because black edge is higher/lower than we
// are now. (NOTE: keep this less than 1 in case we implement logo detection)
},
pillarTest: {
ignoreThinPillarsPx: number, // ignore pillars that are less than this many pixels thick.
allowMisaligned: number // left and right edge can vary this much (%)
},
textLineTest: {
nonTextPulse: number, // if a single continuous pulse has this many non-black pixels, we aren't dealing
// with text. This value is relative to canvas width (%)
pulsesToConfirm: number, // this is a threshold to confirm we're seeing text.
pulsesToConfirmIfHalfBlack: number, // this is the threshold to confirm we're seeing text if longest black pulse
// is over 50% of the canvas width
testRowOffset: number // we test this % of height from detected edge
}
},
arDetect: AardSettings,
ui: {
inPlayer: {

View File

@ -6,6 +6,7 @@ import VideoData from '../video-data/VideoData';
import { Corner } from './enums/corner.enum';
import { GlCanvas } from './gl/GlCanvas';
import { AardCanvasStore } from './interfaces/aard-canvas-store.interface';
import { AardDetectionSample, generateSampleArray } from './interfaces/aard-detection-sample.interface';
import { AardStatus, initAardStatus } from './interfaces/aard-status.interface';
import { AardTestResults, initAardTestResults } from './interfaces/aard-test-results.interface';
import { AardTimers, initAardTimers } from './interfaces/aard-timers.interface';
@ -233,7 +234,8 @@ class Aard {
public status: AardStatus = initAardStatus();
private timers: AardTimers = initAardTimers();
private canvasStore: AardCanvasStore;
private testResults: AardTestResults = initAardTestResults();
private testResults: AardTestResults;
private canvasSamples: AardDetectionSample;
//#endregion
//#region getters
@ -259,6 +261,8 @@ class Aard {
this.settings = videoData.settings;
this.eventBus = videoData.eventBus;
this.testResults = initAardTestResults(this.settings.active.arDetect)
this.initEventBus();
// this.sampleCols = [];
@ -285,9 +289,22 @@ class Aard {
main: new GlCanvas(new GlCanvas(this.settings.active.arDetect.canvasDimensions.sampleCanvas)),
};
this.canvasSamples = {
top: generateSampleArray(
this.settings.active.arDetect.sampling.staticCols,
this.settings.active.arDetect.canvasDimensions.sampleCanvas.width
),
bottom: generateSampleArray(
this.settings.active.arDetect.sampling.staticCols,
this.settings.active.arDetect.canvasDimensions.sampleCanvas.width
),
};
this.start();
}
//#endregion
start() {
if (this.conf.resizer.lastAr.type === AspectRatioType.AutomaticUpdate) {
@ -362,6 +379,8 @@ class Aard {
break;
}
// STEP 3:
// If we are here, we must do full aspect ratio detection.
} while (false);
@ -519,10 +538,12 @@ class Aard {
}
}
avg = avg / samples * 4;
// Avg only contains highest subpixel,
// but there's 4 subpixels per sample.
avg = avg / (samples * 4);
// TODO: unhardcode these values
this.testResults.notLetterbox = avg > 16;
this.testResults.notLetterbox = avg > (this.testResults.blackLevel);
// only update black level if not letterbox.
// NOTE: but maybe we could, if blackLevel can only get lower than
@ -561,7 +582,7 @@ class Aard {
const cornerViolations = [0,0,0,0];
let subpixelViolation = false;
let edgePosition = 0.25; // TODO: unhardcode and put into settings. Is % of total width
let edgePosition = this.settings.active.arDetect.sampling.edgePosition;
const segmentPixels = width * edgePosition;
const edgeSegmentSize = segmentPixels * 4;
@ -577,35 +598,35 @@ class Aard {
let i = rowStart;
while (i < firstSegment) {
subpixelViolation = false;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
if (subpixelViolation) {
if (
imageData[i] > this.testResults.blackThreshold
|| imageData[i + 1] > this.testResults.blackThreshold
|| imageData[i + 2] > this.testResults.blackThreshold
) {
cornerViolations[Corner.TopLeft]++;
}
i++; // skip over alpha channel
i += 4;
}
while (i < secondSegment) {
if (i % 4 === 3) {
continue; // don't check alpha
}
if (imageData[i] > this.testResults.blackThreshold) {
this.testResults.guardLine.invalidated = true;
this.testResults.imageLine.invalidated = true;
return; // no need to check further,
}
if (
imageData[i] > this.testResults.blackThreshold
|| imageData[i + 1] > this.testResults.blackThreshold
|| imageData[i + 2] > this.testResults.blackThreshold
) {
return;
};
i += 4;
}
while (i < rowEnd) {
subpixelViolation = false;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
if (subpixelViolation) {
if (
imageData[i] > this.testResults.blackThreshold
|| imageData[i + 1] > this.testResults.blackThreshold
|| imageData[i + 2] > this.testResults.blackThreshold
) {
cornerViolations[Corner.TopRight]++;
}
i++; // skip over alpha channel
i += 4; // skip over alpha channel
}
}
// check bottom
@ -620,42 +641,40 @@ class Aard {
i += 4 - (i % 4);
}
while (i < firstSegment) {
subpixelViolation = false;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
if (subpixelViolation) {
if (
imageData[i] > this.testResults.blackThreshold
|| imageData[i + 1] > this.testResults.blackThreshold
|| imageData[i + 2] > this.testResults.blackThreshold
) {
cornerViolations[Corner.BottomLeft]++;
}
i++; // skip over alpha channel
i += 4; // skip over alpha channel
}
if (i % 4) {
i += 4 - (i % 4);
}
while (i < secondSegment) {
if (i % 4 === 3) {
continue; // don't check alpha
}
if (imageData[i] > this.testResults.blackThreshold) {
this.testResults.guardLine.invalidated = true;
this.testResults.imageLine.invalidated = true;
return; // no need to check further,
}
if (
imageData[i] > this.testResults.blackThreshold
|| imageData[i + 1] > this.testResults.blackThreshold
|| imageData[i + 2] > this.testResults.blackThreshold
) {
return;
};
i += 4;
}
if (i % 4) {
i += 4 - (i % 4);
}
while (i < rowEnd) {
subpixelViolation = false;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
subpixelViolation ||= imageData[i++] > this.testResults.blackThreshold;
if (subpixelViolation) {
if (
imageData[i] > this.testResults.blackThreshold
|| imageData[i + 1] > this.testResults.blackThreshold
|| imageData[i + 2] > this.testResults.blackThreshold
) {
cornerViolations[Corner.BottomRight]++;
}
i++; // skip over alpha channel
i += 4; // skip over alpha channel
}
}
@ -706,7 +725,7 @@ class Aard {
return;
}
let edgePosition = 0.25; // TODO: unhardcode and put into settings. Is % of total width.
let edgePosition = this.settings.active.arDetect.sampling.edgePosition;
const segmentPixels = width * edgePosition;
const edgeSegmentSize = segmentPixels * 4;
@ -899,4 +918,570 @@ class Aard {
this.testResults.imageLine.invalidated = true;
}
/**
* Tries to detect aspect ratio.
*
* < FAQ >
* Why not binary search?
*
* - Binary search is prone to false detections in certain
* scenarios where multiple horizontal dark and bright areas
* are present in the frame, e.g. window blinds
*
*
* P.S.:
* Future Tam, don't fucking think about that. I did the homework,
* you aren't getting paid enough to find a way to make binary
* search work. Go and work on a neat mini or an ambitious cosplay,
* Chrome Web Store absolutely does not deserve this level of effort,
* If you wanna chase imaginary internet approval points, then cosplay
* and minis ripped from GW2 and Styx require much less sanity and
* provide much more imaginary reddit points.
*
* Also maybe finish that story you're writing since 2009 if you
* haven't already. Or learn Godot.
*/
private aspectRatioCheck(imageData: Uint8Array, width: number, height: number) {
// this costs us tiny bit of overhead, but it makes code slightly more
// manageable. We'll be making this tradeoff here, mostly due to the
// fact that it makes the 'if' statement governing gradient detection
// bit more nicely visible (instead of hidden among spagheti)
this.edgeScan(imageData, width, height);
this.validateEdgeScan(imageData, width, height);
// TODO: _if gradient detection is enabled, then:
this.sampleForGradient(imageData, width, height);
this.processScanResults(imageData, width, height);
}
/**
* Detects positions where frame stops being black and begins to contain image.
* @param imageData
* @param width
* @param height
*/
private edgeScan(imageData: Uint8Array, width: number, height: number) {
const detectionLimit = 8; // TODO: unhardcode
let mid = ~~(height / 2);
let topStart = 0;
let topEnd = mid;
let bottomStart = height;
let bottomEnd = mid;
let rowOffset = 0;
/**
* We can use invalidated blackbar and imagebar data to make some inferences
* about where to find our letterbox. This test is all the data we need to check
* if valid guardLine has ever been set, since guardLine and imageLine are set
* in tandem (either both exist, or neither does (-1)).
*/
if (this.testResults.guardLine.top > 0) {
// if guardLine is invalidated, then the new edge of image frame must be
// above former guardline. Otherwise, it's below it.
if (this.testResults.guardLine.invalidated) {
topEnd = this.testResults.guardLine.top;
bottomEnd = this.testResults.guardLine.bottom;
} else {
topStart = this.testResults.imageLine.top;
bottomStart = this.testResults.imageLine.bottom;
}
}
let row: number, i: number, x: number, isImage: boolean, finishedRows: number;
// Detect upper edge
{
row = topStart;
x = 0;
isImage = false;
finishedRows = 0;
while (row < topEnd) {
i = 0;
rowOffset = row * 4 * width;
// test the entire row
while (i < this.canvasSamples.top.length) {
// read x offset for the row we're testing, after this `i` points to the
// result location
x = this.canvasSamples.top[i++];
// check for image, after we're done `x` points to alpha channel
isImage =
imageData[rowOffset + x++] > this.testResults.blackLevel
|| imageData[rowOffset + x++] > this.testResults.blackLevel
|| imageData[rowOffset + x++] > this.testResults.blackLevel;
if (!isImage) {
// TODO: maybe some day mark this pixel as checked by writing to alpha channel
i++;
continue;
}
if (!this.canvasSamples.top[i]) {
this.canvasSamples.top[i] = row;
finishedRows++;
}
i++;
}
// quit test early if we can
if (finishedRows >= detectionLimit) {
break;
}
row++;
}
}
// Detect lower edge
// NOTE: this part of the frame is checked less efficiently, because testResults
// array is not oriented in optimal way. It could be fixed but refer to the `P.S.`
// section of this function's description.
{
row = bottomStart;
i = 0;
x = 0;
isImage = false;
finishedRows = 0;
while (row --> bottomEnd) {
i = 0;
rowOffset = row * 4 * width;
// test the entire row
while (i < this.canvasSamples.bottom.length) {
// read x offset for the row we're testing, after this `i` points to the
// result location
x = this.canvasSamples.bottom[i++];
// check for image, after we're done `x` points to alpha channel
isImage =
imageData[rowOffset + x++] > this.testResults.blackLevel
|| imageData[rowOffset + x++] > this.testResults.blackLevel
|| imageData[rowOffset + x++] > this.testResults.blackLevel;
if (!isImage) {
// TODO: maybe some day mark this pixel as checked by writing to alpha channel
i++;
continue;
}
if (!this.canvasSamples.bottom[i]) {
this.canvasSamples.bottom[i] = row;
finishedRows++;
}
i++;
}
// quit test early if we can
if (finishedRows >= detectionLimit) {
break;
}
row++;
}
}
}
/**
* Validates edge scan results.
*
* We check _n_ pixels to the left and to the right of detection, one row above
* the detection (or under, when checking the bottom letterbox). If there's anything
* non-black in this area, we invalidate the detection by setting the relevant
* `canvasSample` to -1.
*
* For bottom rows, this function also converts row to the offset from the bottom.
*
* Note that this function returns nothing instead it modifies properties of this
* class. We do this in order to reduce garbage generation. This code runs often,
* therefore we prefer reusing variables to generating new ones whenever reasonably
* possible (though not always).
*
* @param imageData
* @param width
* @param height
*/
private validateEdgeScan(imageData: Uint8Array, width: number, height: number) {
let i = 0;
let xs: number, xe: number, row: number;
const slopeTestSample = this.settings.active.arDetect.edgeDetection.slopeTestWidth * 4;
while (i < this.canvasSamples.top.length) {
// calculate row offset:
row = (this.canvasSamples.top[i + 1] - 1) * width * 4;
xs = row + this.canvasSamples.top[i] - slopeTestSample;
xe = row + this.canvasSamples.top[i] + slopeTestSample;
while (xs < xe) {
if (
imageData[xs] > this.testResults.blackThreshold
|| imageData[xs + 1] > this.testResults.blackThreshold
|| imageData[xs + 2] > this.testResults.blackThreshold
) {
this.canvasSamples.top[i + 1] = -1;
break;
}
xs += 4;
}
i += 2;
}
i = 0;
let i1 = 0;
while (i < this.canvasSamples.bottom.length) {
// calculate row offset:
i1 = i + 1;
row = (this.canvasSamples.bottom[i1] - 1) * width * 4;
xs = row + this.canvasSamples.bottom[i] - slopeTestSample;
xe = row + this.canvasSamples.bottom[i] + slopeTestSample;
while (xs < xe) {
if (
imageData[xs] > this.testResults.blackThreshold
|| imageData[xs + 1] > this.testResults.blackThreshold
|| imageData[xs + 2] > this.testResults.blackThreshold
) {
this.canvasSamples.bottom[i1] = -1;
i += 2;
break;
}
xs += 4;
}
if (this.canvasSamples.bottom[i1]) {
this.canvasSamples.bottom[i1] = height - this.canvasSamples.bottom[i1];
}
i += 2;
}
}
/**
* Tries to detect whether our detection is detecting a hard edge, or a gradient.
* Gradients shouldn't count as detection.
* @param imageData
* @param width
* @param height
*/
private sampleForGradient(imageData: Uint8Array, width: number, height: number) {
let j = 0, maxSubpixel = 0, lastSubpixel = 0, firstSubpixel = 0, pixelOffset = 0;
const sampleLimit = this.settings.active.arDetect.edgeDetection.gradientTestSamples;
const blackThreshold = this.testResults.blackLevel + this.settings.active.arDetect.edgeDetection.gradientTestBlackThreshold;
const realWidth = width * 4;
upperEdgeCheck:
for (let i = 1; i < this.canvasSamples.top.length; i += 2) {
pixelOffset = this.canvasSamples.top[i] * realWidth + this.canvasSamples.top[i - 1] * 4;
lastSubpixel = imageData[pixelOffset] > imageData[pixelOffset + 1] ? imageData[pixelOffset] : imageData[pixelOffset + 1];
lastSubpixel = lastSubpixel > imageData[pixelOffset + 1] ? lastSubpixel : imageData[pixelOffset];
firstSubpixel = lastSubpixel; // save it
j = 1;
while (j < sampleLimit) {
maxSubpixel = imageData[pixelOffset] > imageData[pixelOffset + 1] ? imageData[pixelOffset] : imageData[pixelOffset + 1];
maxSubpixel = maxSubpixel > imageData[pixelOffset + 2] ? maxSubpixel : imageData[pixelOffset + 2];
/**
* Some assumptions.
*
* * If max subpixel is above max threshold, we probs aren't in a gradient (as it would imply
* too sudden of a change in pixel brightness)
* * if we are looking at a gradient, then we expect every pixel to be brighter than the
* previous one. If it isn't, then we probably aren't in a gradient.
* * if delta is too big, we probably aren't looking at a gradient, either
*/
if (
maxSubpixel > blackThreshold
|| maxSubpixel < lastSubpixel
|| maxSubpixel - lastSubpixel > this.settings.active.arDetect.edgeDetection.gradientTestDeltaThreshold
) {
continue upperEdgeCheck;
}
lastSubpixel = maxSubpixel;
pixelOffset -= realWidth;
j++;
}
// if we came this far, we're probably looking at a gradient — unless the last pixel of our sample
// didn't change meaningfully from the first, in which chance we aren't. If the brightness increased
// anywhere between 'not enough' and 'too much', we mark the measurement as invalid.
if (lastSubpixel - firstSubpixel > this.settings.active.arDetect.edgeDetection.gradientTestMinDelta) {
this.canvasSamples.top[i] = -1;
}
}
lowerEdgeCheck:
for (let i = 1; i < this.canvasSamples.bottom.length; i += 2) {
pixelOffset = (height - this.canvasSamples.bottom[i]) * realWidth + this.canvasSamples.bottom[i - 1] * 4;
lastSubpixel = imageData[pixelOffset] > imageData[pixelOffset + 1] ? imageData[pixelOffset] : imageData[pixelOffset + 1];
lastSubpixel = lastSubpixel > imageData[pixelOffset + 1] ? lastSubpixel : imageData[pixelOffset];
firstSubpixel = lastSubpixel; // save it
j = 1;
while (j < sampleLimit) {
maxSubpixel = imageData[pixelOffset] > imageData[pixelOffset + 1] ? imageData[pixelOffset] : imageData[pixelOffset + 1];
maxSubpixel = maxSubpixel > imageData[pixelOffset + 2] ? maxSubpixel : imageData[pixelOffset + 2];
/**
* Some assumptions.
*
* * If max subpixel is above max threshold, we probs aren't in a gradient (as it would imply
* too sudden of a change in pixel brightness)
* * if we are looking at a gradient, then we expect every pixel to be brighter than the
* previous one. If it isn't, then we probably aren't in a gradient.
* * if delta is too big, we probably aren't looking at a gradient, either
*/
if (
maxSubpixel > blackThreshold
|| maxSubpixel < lastSubpixel
|| maxSubpixel - lastSubpixel > this.settings.active.arDetect.edgeDetection.gradientTestDeltaThreshold
) {
continue lowerEdgeCheck;
}
lastSubpixel = maxSubpixel;
pixelOffset -= realWidth;
j++;
}
// if we came this far, we're probably looking at a gradient — unless the last pixel of our sample
// didn't change meaningfully from the first, in which chance we aren't. If the brightness increased
// anywhere between 'not enough' and 'too much', we mark the measurement as invalid.
if (lastSubpixel - firstSubpixel > this.settings.active.arDetect.edgeDetection.gradientTestMinDelta) {
this.canvasSamples.top[i] = -1;
}
}
}
private similarityMatrix = new Uint16Array(21
);
private processScanResults(imageData: Uint8Array, width: number, height: number) {
/**
* Few things to note
* our canvasSamples are positioned like this:
*
* |---0---1---2---3---|
* 0 19
*
* We need to figure out how many positions lie before and
* after our cutoff mark (25% and 75% of width, respectively):
*
* |---0:--1---2--:3---|
* | : : |
* 0 5 15 19
*
* In order to accurately determine whether column belongs
* to edge region or not, we need to invent two extra imaginary
* sampling position, in order to keep sampling position 0 at
* 20% of the width.
*
* (NOTE: it was too late for me to actually think about whether this
* holds any water, but it prolly doesn't matter too much anyway)
*/
const fullFence = this.settings.active.arDetect.sampling.staticCols + 1;
const edgePosition = this.settings.active.arDetect.sampling.edgePosition;
// remember: array has two places per sample position — hence x2 on the results
const leftEdgeBoundary = ~~(fullFence * edgePosition) * 2;
const rightEdgeBoundary = (this.settings.active.arDetect.sampling.staticCols - leftEdgeBoundary) * 2;
let i: number;
// Process top edge:
i = 1;
{
// We'll just unroll this loop, too much overhead for 3 items
this.testResults.aspectRatioCheck.topRows[0] = Infinity;
this.testResults.aspectRatioCheck.topRows[1] = Infinity;
this.testResults.aspectRatioCheck.topRows[2] = Infinity;
this.testResults.aspectRatioCheck.topQuality[0] = 0;
this.testResults.aspectRatioCheck.topQuality[1] = 0;
this.testResults.aspectRatioCheck.topQuality[2] = 0;
while (i < leftEdgeBoundary) {
if (this.canvasSamples.top[i] > -1) {
if (this.canvasSamples.top[i] <= this.testResults.aspectRatioCheck.topRows[0]) {
this.testResults.aspectRatioCheck.topRows[0] = this.canvasSamples.top[i];
this.testResults.aspectRatioCheck.topQuality[0] = 0;
} else if (this.canvasSamples.top[i] === this.testResults.aspectRatioCheck.topRows[0]) {
this.testResults.aspectRatioCheck.topQuality[0]++;
}
}
i += 2;
}
while (i < rightEdgeBoundary) {
if (this.canvasSamples.top[i] > -1) {
if (this.canvasSamples.top[i] <= this.testResults.aspectRatioCheck.topRows[1]) {
this.testResults.aspectRatioCheck.topRows[1] = this.canvasSamples.top[i];
this.testResults.aspectRatioCheck.topQuality[1] = 0;
} else if (this.canvasSamples.top[i] === this.testResults.aspectRatioCheck.topRows[1]) {
this.testResults.aspectRatioCheck.topQuality[1]++;
}
}
i += 2;
}
while (i < this.canvasSamples.top.length) {
if (this.canvasSamples.top[i] > -1) {
if (this.canvasSamples.top[i] <= this.testResults.aspectRatioCheck.topRows[2]) {
this.testResults.aspectRatioCheck.topRows[2] = this.canvasSamples.top[i];
this.testResults.aspectRatioCheck.topQuality[2] = 0;
} else if (this.canvasSamples.top[i] === this.testResults.aspectRatioCheck.topRows[2]) {
this.testResults.aspectRatioCheck.topQuality[2]++;
}
}
i += 2;
}
}
// Process bottom edge
i = 1;
{
// We'll just unroll this loop, too much overhead for 3 items
this.testResults.aspectRatioCheck.bottomRows[0] = Infinity;
this.testResults.aspectRatioCheck.bottomRows[1] = Infinity;
this.testResults.aspectRatioCheck.bottomRows[2] = Infinity;
this.testResults.aspectRatioCheck.bottomQuality[0] = 0;
this.testResults.aspectRatioCheck.bottomQuality[1] = 0;
this.testResults.aspectRatioCheck.bottomQuality[2] = 0;
while (i < leftEdgeBoundary) {
if (this.canvasSamples.bottom[i] > -1) {
if (this.canvasSamples.bottom[i] <= this.testResults.aspectRatioCheck.bottomRows[0]) {
this.testResults.aspectRatioCheck.bottomRows[0] = this.canvasSamples.bottom[i];
this.testResults.aspectRatioCheck.bottomQuality[0] = 0;
} else if (this.canvasSamples.bottom[i] === this.testResults.aspectRatioCheck.bottomRows[0]) {
this.testResults.aspectRatioCheck.bottomQuality[0]++;
}
}
i += 2;
}
while (i < rightEdgeBoundary) {
if (this.canvasSamples.bottom[i] > -1) {
if (this.canvasSamples.bottom[i] <= this.testResults.aspectRatioCheck.bottomRows[1]) {
this.testResults.aspectRatioCheck.bottomRows[1] = this.canvasSamples.bottom[i];
this.testResults.aspectRatioCheck.bottomQuality[1] = 0;
} else if (this.canvasSamples.bottom[i] === this.testResults.aspectRatioCheck.bottomRows[1]) {
this.testResults.aspectRatioCheck.bottomQuality[1]++;
}
}
i += 2;
}
while (i < this.canvasSamples.bottom.length) {
if (this.canvasSamples.bottom[i] > -1) {
if (this.canvasSamples.bottom[i] <= this.testResults.aspectRatioCheck.bottomRows[2]) {
this.testResults.aspectRatioCheck.bottomRows[2] = this.canvasSamples.bottom[i];
this.testResults.aspectRatioCheck.bottomQuality[2] = 0;
} else if (this.canvasSamples.bottom[i] === this.testResults.aspectRatioCheck.bottomRows[2]) {
this.testResults.aspectRatioCheck.bottomQuality[2]++;
}
}
i += 2;
}
}
/**
* Determining our best edge candidate goes something like this:
*
* [ start ]
* |
* < > Are detections from all three sections on the same row
* / \
* yes no > further testing needed
* V |
* valid candidate |
* < > Are corner sections different?
* / \
* yes no +
* | | is center section closer
* does any section | < > to the edge of the frame?
* match with center? < > / \
* / \ no yes > center gets authority
* yes no V
* / | Center result is probably bad, regardless
* Is center above | | of score. No logo + edge gets authority.
* the mismatched | |
* section? < > Topmost (closest-to-frame-edge) option wins,
* / \ but detection quality is shit.
* yes no
* V \
* Not a logo. Center authority,
* V
* Center authority.
*
*
*/
if (
this.testResults.aspectRatioCheck.topRows[0] === this.testResults.aspectRatioCheck.topRows[1]
&& this.testResults.aspectRatioCheck.topRows[0] === this.testResults.aspectRatioCheck.topRows[2]
) {
this.testResults.aspectRatioCheck.topCandidate = this.testResults.aspectRatioCheck.topRows[0];
this.testResults.aspectRatioCheck.topCandidateQuality =
this.testResults.aspectRatioCheck.topQuality[0]
+ this.testResults.aspectRatioCheck.topQuality[1]
+ this.testResults.aspectRatioCheck.topQuality[2];
} else if (
this.testResults.aspectRatioCheck.topRows[0] === this.testResults.aspectRatioCheck.topRows[2]
) {
}
/**
* Check that both top and bottom candidates are approximately equally distant
* from the edge. If top and bottom candidates do not match, or fail to meet
* the edge detection threshold, then we set 'unreliable detection' flag, which
* will cause aspect ratio detection to be postponed.
*
* Otherwise, we set letterbox width (px from edge on detection canvas) and how
* far the frame is shifted off-center.
*
* If frame shifts too much off-center, we also set the 'unreliable detection' flag.
*/
/**
* Calculate how dissimilar each sampling segment is from.
*
* Similarity matrix can tell us a few things:
*
* 1. If a corner is not dissimilar from center and the other corner on its respective side, then we probably don't have a logo.
* our edge is also probably accurate.
* * that is, unless other
* 2. If corner varies a lot from center and other corner, but center and other corner are similar, then we're looking at a logo
*
*
*/
let r: number;
for (let i = 0; i < 3; i += 3) {
r = i * 3;
// similarity top - top
this.similarityMatrix[r] = this.testResults.aspectRatioCheck.topRows[i] - this.testResults.aspectRatioCheck.topRows[(i + 1) % 3];
this.similarityMatrix[r + 1] = this.testResults.aspectRatioCheck.topRows[i] - this.testResults.aspectRatioCheck.topRows[(i + 2) % 3];
// similarity top - bottom
this.similarityMatrix[r + 2] = this.testResults.aspectRatioCheck.topRows[i] - this.testResults.aspectRatioCheck.bottomRows[0];
this.similarityMatrix[r + 3] = this.testResults.aspectRatioCheck.topRows[i] - this.testResults.aspectRatioCheck.bottomRows[1];
this.similarityMatrix[r + 4] = this.testResults.aspectRatioCheck.topRows[i] - this.testResults.aspectRatioCheck.bottomRows[2];
// similarity bottom - bottom
this.similarityMatrix[r + 5] = this.testResults.aspectRatioCheck.bottomRows[i] - this.testResults.aspectRatioCheck.bottomRows[(i + 1) % 3];
this.similarityMatrix[r + 6] = this.testResults.aspectRatioCheck.bottomRows[i] - this.testResults.aspectRatioCheck.bottomRows[(i + 2) % 3];
}
}
//#endregion
}

View File

@ -0,0 +1,77 @@
/**
* Used to store coordinates of sample columns/rows and the
* first x/y position where non-black pixels were detected.
*
* Arrays are laid out like so:
*
* We check each row at these positions (columns)
* V V V
* _________ _________ _________ _____
* | x | y | x | y | x | y | ..
* '''''''''' ''''''''' ''''''''' '''''
* A A A
* If checked pixel is non-black, we put current row into
* this element of the array.
*
*/
export interface AardDetectionSample {
top?: Int16Array;
bottom?: Int16Array;
left?: Int16Array;
right?: Int16Array;
}
export function generateSampleArray(samples: number, width: number, topBottom: boolean = true) {
const sampleStore = new Int16Array(samples * 2);
/**
* We want to reverse-fencepost here.
*
* Normally, our sample positions would look like this:
*
*
* 0 1 2 3
* | :
* ||||:
* | < 20 units > :
* 0 19
*
* But we'd rather our samples are center-justified.
* We can solve this issue by dividing the width into
* (samples + 1) slices, and ignoring the first (0)
* position:
*
* 0 1 2 3
* :
* :||||:
* : :
* 0 19
*
*/
const sampleInterval = ~~(width / ( samples + 1 ));
let i = 0, col = 1;
while (i < sampleStore.length) {
sampleStore[i] = sampleInterval * col * (+topBottom * 4);
i++;
// initialize to -1 (invalid result)
sampleStore[i] = -1;
i++;
col++;
}
return sampleStore;
}
export function resetSamples(samples: AardDetectionSample) {
samples.top && resetArray(samples.top);
samples.bottom && resetArray(samples.bottom);
samples.left && resetArray(samples.left);
samples.right && resetArray(samples.right);
}
function resetArray(x: Int16Array) {
for (let i = 1; i < x.length; i+= 2) {
x[i] = -1;
}
}

View File

@ -0,0 +1,54 @@
export interface AardGradientSamples {
top: Array<Uint8Array>,
bottom: Array<Uint8Array>,
left?: Array<Uint8Array>,
right?: Array<Uint8Array>,
}
export interface AardGradientSampleOptions {
aspectRatioSamples: number;
gradientSamples: number,
}
function generateArray(samplingOptions: AardGradientSampleOptions) {
const arr = new Array<Uint8Array>(samplingOptions.aspectRatioSamples)
for (let i = 0; i < samplingOptions.aspectRatioSamples; i++) {
arr[i] = new Uint8Array(samplingOptions.gradientSamples);
}
return arr;
}
export function initAardGradientSamples(letterboxSamplingOptions: AardGradientSampleOptions): AardGradientSamples {
return {
top: generateArray(letterboxSamplingOptions),
bottom: generateArray(letterboxSamplingOptions),
};
}
export function resetGradientSamples(samples: AardGradientSamples) {
for (let i = 0; i < samples.top.length; i++) {
for (let j = 0; j < samples.top[i].length; j++) {
samples.top[i][j] = 0;
}
}
for (let i = 0; i < samples.bottom.length; i++) {
for (let j = 0; j < samples.bottom[i].length; j++) {
samples.top[i][j] = 0;
}
}
if (samples.left) {
for (let i = 0; i < samples.left.length, i++) {
for (let j = 0; j < samples.left[i].length; j++) {
samples.left[i][j] = 0;
}
}
}
if (samples.right) {
for (let i = 0; i < samples.right.length; i++) {
for (let j = 0; j < samples.right[i].length; j++) {
samples.right[i][j] = 0;
}
}
}
}

View File

@ -1,3 +1,5 @@
import { AardSettings } from '../../../../common/interfaces/SettingsInterface'
export interface AardTestResults {
isFinished: boolean,
lastStage: number,
@ -14,15 +16,24 @@ export interface AardTestResults {
top: number, // is cumulative
bottom: number, // is cumulative
invalidated: boolean
}
},
aspectRatioCheck: {
topRows: [number, number, number],
topQuality: [number, number, number],
bottomRows: [number, number, number],
bottomQuality: [number, number, number],
topCandidate: number,
topCandidateQuality: number
},
logoDetected: [boolean, boolean, boolean, boolean]
}
export function initAardTestResults(): AardTestResults {
export function initAardTestResults(settings: AardSettings): AardTestResults {
return {
isFinished: true,
lastStage: 0,
notLetterbox: false,
blackLevel: 0,
blackLevel: settings.blackLevels.defaultBlack,
blackThreshold: 16,
guardLine: {
top: -1,
@ -34,6 +45,27 @@ export function initAardTestResults(): AardTestResults {
top: -1,
bottom: -1,
invalidated: false,
}
},
aspectRatioCheck: {
topRows: [-1, -1, -1],
topQuality: [0, 0, 0],
bottomRows: [-1, -1, -1],
bottomQuality: [0, 0, 0],
topCandidate: 0,
topCandidateQuality: 0
},
logoDetected: [false, false, false, false]
}
}
export function resetAardTestResults(results: AardTestResults): void {
results.isFinished = false;
results.lastStage = 0;
results.notLetterbox = false;
results.guardLine.invalidated = false
results.guardLine.cornerViolations[0] = false;
results.guardLine.cornerViolations[1] = false;
results.guardLine.cornerViolations[2] = false;
results.guardLine.cornerViolations[3] = false;
}