diff --git a/src/ext/lib/ar-detect/edge-detect/EdgeDetect.js b/src/ext/lib/ar-detect/edge-detect/EdgeDetect.js index 67c08bb..b990e9c 100644 --- a/src/ext/lib/ar-detect/edge-detect/EdgeDetect.js +++ b/src/ext/lib/ar-detect/edge-detect/EdgeDetect.js @@ -539,60 +539,300 @@ class EdgeDetect{ // helper functions - _columnTest2(image, top, bottom, colsIn, colsOut, reverseSearchDirection) { - let tmpI; - let edgeDetectCount = 0; - if(reverseSearchDirection){ - for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){ - for(let c = 0; c < colsIn.length; c++){ - if (colsIn[c].blackFound && colsIn[c].imageFound) { - // če smo našli obe točki, potem ne pregledujemo več. - // if we found both points, we don't continue anymore + // Column tests + // Here's a fun thing. I reckon this bit of code could potentially run often enough that L1/L2 cache misses + // could really start to add up (especially if I figure the RAM usage problem which causes insane RAM usage + // if you run this 30-60 times a second) + // + // so here's two functions. _columnTest3_cross has some optimization that tries to minimize cache misses, + // but the problem is that I don't actually know 100% what I'm doing so it might be pointless. It scans the + // image array line-by-line, rather than column-by-column. This has some advantages (e.g. we can end the + // search for letterbox early), and some disadvantages (the code is a mess) + // + // some time later down the line, I might actually implement _columnTest3_singleCol, which does shit in the + // opposite direction (column-by-column rather than row-by-row) + _columnTest3_cross(image, top, bottom, colsIn, colsOut, reverseSearchDirection) { + // this function is such a /r/badcode bait. + // + // this is the shit we do to avoid function calls and one extra if sentence/code repetition + // pretend I was drunk when I wrote this + let tmpi, lastTmpI = 0, edgeDetectCount = 0, edgeDetectColsLeft = colsIn.length; + let tmpVal = 0; + let increment, arrayStart, arrayEnd; + + let loopCond, loopComparator, loopIndex; + + if (reverseSearchDirection) { + increment = -this.conf.canvasImageDataRowLength; + arrayStart = bottom - this.conf.canvasImageDataRowLength; + arrayEnd = top; + + // this is a hack so we get pointer-like things rather than values + loopCond = {compare: {i: arrayEnd}, index: {i: 0}} + loopComparator = loopCond.index; + loopIndex = loopCond.compare; + } else { + increment = this.conf.canvasImageDataRowLength; + arrayStart = top; + arrayEnd = bottom; + + // this is a hack so we get pointer-like things rather than values + loopCond = {compare: {i: arrayEnd}, index: {i: 0}} + loopComparator = loopCond.compare; + loopIndex = loopCond.index; + } + + // keep temporary column data in a separate column array: + const colsTmp = new Array(colsIn.length); + for (let i = 0; i < colsTmp.length; i++) { + colsTmp[i] = { + blackFound: false, + imageFound: false, // misleading name — also true if we ran over gradientSampleSize pixels from image + // whether that actually count as an image depends on how aggressive gradientDetection is + lastValue: -1, + diffIndex: 0, + diffs: new Array(this.settings.active.arDetect.blackbar.gradientSampleSize).fill(0) + } + } + + // Things to keep in mind: loopCond.index.i is always index. + // loopIndex.i could actually be loopCond.compare.i (comparator) and + // loopComparator.i could actually be loopCond.index.i (real index) + for (loopCond.index.i = arrayStart; loopIndex.i < loopComparator.i; loopCond.index.i += increment) { + + // če smo našli toliko mejnih točk, da s preostalimi stolpci ne moremo doseči naše meje, potem prenehamo + // if we found enough edge points so that we couldn't top that limit with remaining columns, then we stop + // searching forward + edgeDetectColsLeft -= edgeDetectCount; + if (edgeDetectColsLeft < this.colsThreshold || edgeDetectCount >= this.colsThreshold) { + break; + } + edgeDetectCount = 0; + + + // če v eni vrstici dobimo dovolj točk, ki grejo čez našo mejo zaznavanja, potem bomo nehali + // the first line that goes over our detection treshold wins + for (let c = 0; c < colsIn.length; c++) { + + // there's really no point in checking this column if we already found image point + if (colsTmp[c].imageFound) { + continue; + } + + tmpI = loopCond.index.i + (colsIn[c].value << 2); + + // najprej preverimo, če je piksel presegel mejo črnega robu + // first we check whether blackbarThreshold was exceeded + if (! colsTmp[c].blackFound) { + if( image[tmpI] > this.blackbarThreshold || + image[tmpI + 1] > this.blackbarThreshold || + image[tmpI + 2] > this.blackbarThreshold ){ + + colsOut[c].black = ~~(i / this.conf.canvasImageDataRowLength); // note — this value is off by one + colsOut[c].col = colsIn[c].value; + colsTmp[c].blackFound = true; + + // prisili, da se zanka izvede še enkrat ter preveri, + // ali trenuten piksel preseže tudi imageThreshold + // + // force the loop to repeat this step and check whether + // current pixel exceeds imageThreshold as well + c--; continue; } - tmpI = i + (colsIn[c].value << 2); + } else { + // če smo dobili piksel, ki presega blackbar, preverimo do gradientSampleSize dodatnih pikslov. + // ko dobimo piksel čez imageTreshold oz. gradientSampleSize, nastavimo imageFound. Ali je to veljavno + // bomo preverili v koraku analize, ki sledi kasneje + // + // if we found a pixel that exceeds blackbar, we check up to gradientSampleSize additional pixels. + // when we get a pixel over imageTreshold or gradientSampleSize, we flip the imageFound. We'll bother + // with whether that's legit in analysis step, which will follow soon (tm) - // najprej preverimo, če je piksel presegel mejo črnega robu - // first we check whether blackbarThreshold was exceeded - if(! colsIn[c].blackFound) { - if( image[tmpI] > this.blackbarThreshold || - image[tmpI + 1] > this.blackbarThreshold || - image[tmpI + 2] > this.blackbarThreshold ){ - - colsOut[c].black = (i / this.conf.canvasImageDataRowLength) - 1; - colsOut[c].col = colsIn[c].value; - colsIn[c].blackFound = 1; + if (image[tmpI] > this.imageThreshold || + image[tmpI + 1] > this.imageThreshold || + image[tmpI + 2] > this.imageThreshold ){ + + colsOut[c].image = ~~(i / this.conf.canvasImageDataRowLength) - // prisili, da se zanka izvede še enkrat ter preveri, - // ali trenuten piksel preseže tudi imageThreshold - // - // force the loop to repeat this step and check whether - // current pixel exceeds imageThreshold as well - c--; - continue; - } - } else { - if (colsIn[c].blackFound++ > this.settings.active.arDetect.blackbar.gradientSampleSize) { - colsIn[c].imageFound = true; - continue; - } - // zatem preverimo, če je piksel presegel mejo, po kateri sklepamo, da - // predstavlja sliko. Preverimo samo, če smo v stolpcu že presegli - // blackThreshold - // - // then we check whether pixel exceeded imageThreshold - if (image[tmpI] > this.imageThreshold || - image[tmpI + 1] > this.imageThreshold || - image[tmpI + 2] > this.imageThreshold ){ - colsOut[c].image = (i / this.conf.canvasImageDataRowLength) - colsIn[c].imageFound = true; - edgeDetectCount++; + colsTmp[c].imageFound = true; + edgeDetectCount++; + } + + // v vsakem primeru shranimo razliko med prejšnjim in trenutnim pikslom za kasnejšo analizo + // in any case, save the difference between the current and the previous pixel for later analysis + + colsTmp[c].lastValue = image[tmpI] + image[tmpI+1] + image[tmpI+2]; + if (colsTmp[c].diffIndex !== 0) { + colsTmp[c].diffs[colsTmp.diffIndex] = colsTmp[c].lastValue - colsTmp[c].diffs[diffIndex - 1]; + } + + cols[c].diffIndex++; + if (colsTmp[c].diffIndex > this.settings.active.arDetect.blackbar.gradientSampleSize) { + colsTmp[c].imageFound = true; + continue; + } + + } + } + } + + + } + + _columnTest3_singleCol(image, top, bottom, colsIn, colsOut, reverseSearchDirection) { + + } + + _columnTest2(image, top, bottom, colsIn, colsOut, reverseSearchDirection) { + let tmpI; + let lastTmpI = 0; + let edgeDetectCount = 0; + for(const c in colsOut) { + c.diffs = []; + } + if (reverseSearchDirection) { + if (this.settings.active.arDetect.blackbar.antiGradientMode === AntiGradientMode.Disabled) { + // todo: remove gradient detection code from this branch + for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){ + for(let c = 0; c < colsIn.length; c++){ + if (colsIn[c].blackFound && colsIn[c].imageFound) { + // če smo našli obe točki, potem ne pregledujemo več. + // if we found both points, we don't continue anymore + continue; + } + tmpI = i + (colsIn[c].value << 2); + + // najprej preverimo, če je piksel presegel mejo črnega robu + // first we check whether blackbarThreshold was exceeded + if(! colsIn[c].blackFound) { + if( image[tmpI] > this.blackbarThreshold || + image[tmpI + 1] > this.blackbarThreshold || + image[tmpI + 2] > this.blackbarThreshold ){ + + colsOut[c].black = (i / this.conf.canvasImageDataRowLength) - 1; + colsOut[c].col = colsIn[c].value; + colsIn[c].blackFound = 1; + + // prisili, da se zanka izvede še enkrat ter preveri, + // ali trenuten piksel preseže tudi imageThreshold + // + // force the loop to repeat this step and check whether + // current pixel exceeds imageThreshold as well + c--; + continue; + } + } else { + if (colsIn[c].blackFound++ > this.settings.active.arDetect.blackbar.gradientSampleSize) { + colsIn[c].imageFound = true; + continue; + } + // zatem preverimo, če je piksel presegel mejo, po kateri sklepamo, da + // predstavlja sliko. Preverimo samo, če smo v stolpcu že presegli + // blackThreshold + // + // then we check whether pixel exceeded imageThreshold + if (image[tmpI] > this.imageThreshold || + image[tmpI + 1] > this.imageThreshold || + image[tmpI + 2] > this.imageThreshold ){ + + colsOut[c].image = (i / this.conf.canvasImageDataRowLength) + colsIn[c].imageFound = true; + edgeDetectCount++; + } } } + if(edgeDetectCount >= this.colsThreshold) { + break; + } } - if(edgeDetectCount >= this.colsThreshold) { - break; + } else { + // anti-gradient detection + for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){ + for(let c = 0; c < colsIn.length; c++){ + if (colsIn[c].blackFound && colsIn[c].imageFound) { + // če smo našli obe točki, potem ne pregledujemo več. + // if we found both points, we don't continue anymore. + + if (colsIn[c].analysisDone) { + continue; + } + + if (colsOut[c].diffs.length < 5) { + colsIn[c].analysisDone = true; + } + + // average analysis — if steps between pixels are roughly equal, we're looking at a gradient + let sum_avg = 0; + for (let i = 2; i <= colsOut[c].diffs; i++) { + sum_avg += colsOut[c].diffs[i-1] - colsOut[c].diffs[i]; + } + sum_avg /= colsOut[c].diffs.length - 2; + + for (let i = 2; i <= colsOut[c].diffs; i++) { + sum_avg += colsOut[c].diffs[i-1] - colsOut[c].diffs[i]; + } + + continue; + } + + tmpI = i + (colsIn[c].value << 2); + + // najprej preverimo, če je piksel presegel mejo črnega robu + // first we check whether blackbarThreshold was exceeded + if(! colsIn[c].blackFound) { + if( image[tmpI] > this.blackbarThreshold || + image[tmpI + 1] > this.blackbarThreshold || + image[tmpI + 2] > this.blackbarThreshold ){ + + colsOut[c].black = (i / this.conf.canvasImageDataRowLength) - 1; + colsOut[c].col = colsIn[c].value; + colsIn[c].blackFound = 1; + + // prisili, da se zanka izvede še enkrat ter preveri, + // ali trenuten piksel preseže tudi imageThreshold + // + // force the loop to repeat this step and check whether + // current pixel exceeds imageThreshold as well + c--; + colsOut[c].lastImageValue = image[tmpI] + image[tmpI+1] + image[tmpI+2]; + continue; + } + } else { + // če smo dobili piksel, ki presega blackbar, preverimo do gradientSampleSize dodatnih pikslov. + // ko dobimo piksel čez imageTreshold oz. gradientSampleSize, izračunamo ali gre za gradient. + if (colsIn[c].blackFound++ > this.settings.active.arDetect.blackbar.gradientSampleSize) { + colsIn[c].imageFound = true; + continue; + } + // zatem preverimo, če je piksel presegel mejo, po kateri sklepamo, da + // predstavlja sliko. Preverimo samo, če smo v stolpcu že presegli + // blackThreshold + // + // then we check whether pixel exceeded imageThreshold + if (image[tmpI] > this.imageThreshold || + image[tmpI + 1] > this.imageThreshold || + image[tmpI + 2] > this.imageThreshold ){ + + colsOut[c].image = (i / this.conf.canvasImageDataRowLength) + + + colsIn[c].imageFound = true; + edgeDetectCount++; + } + + + // shranimo razliko med prejšnjim in trenutnim pikslom za kasnejšo analizo + // save difference between current and previous pixel for later analysis + const imageValue = image[tmpI] + image[tmpI+1] + image[tmpI+2]; + colsOut[c].diffs.push(imageValue - colsOut[c].lastImage); + colsOut[c].lastImageValue = imageValue; + } + } + if(edgeDetectCount >= this.colsThreshold) { + break; + } } } } else {