1220 lines
48 KiB
JavaScript
1220 lines
48 KiB
JavaScript
import Debug from '../../../conf/Debug';
|
|
import EdgeStatus from './enums/EdgeStatusEnum';
|
|
import EdgeDetectQuality from './enums/EdgeDetectQualityEnum';
|
|
import EdgeDetectPrimaryDirection from './enums/EdgeDetectPrimaryDirectionEnum';
|
|
import AntiGradientMode from '../../../../common/enums/anti-gradient-mode.enum';
|
|
|
|
if (Debug.debug) {
|
|
console.log("Loading EdgeDetect.js");
|
|
}
|
|
|
|
class EdgeDetect{
|
|
|
|
constructor(ardConf){
|
|
this.conf = ardConf;
|
|
this.settings = ardConf.settings;
|
|
|
|
this.sampleWidthBase = this.settings.active.arDetect.edgeDetection.sampleWidth << 2; // corrected so we can work on imageData
|
|
this.halfSample = this.sampleWidthBase >> 1;
|
|
|
|
this.detectionThreshold = this.settings.active.arDetect.edgeDetection.detectionThreshold;
|
|
|
|
this.init(); // initiate things that can change
|
|
}
|
|
|
|
// initiates things that we may have to change later down the line
|
|
init() {
|
|
|
|
}
|
|
|
|
findBars(image, sampleCols, direction = EdgeDetectPrimaryDirection.VERTICAL, quality = EdgeDetectQuality.IMPROVED, guardLineOut, blackFrameAnalysis){
|
|
let fastCandidates, edgeCandidates, bars;
|
|
if (direction == EdgeDetectPrimaryDirection.VERTICAL) {
|
|
fastCandidates = this.findCandidates(image, sampleCols, guardLineOut);
|
|
|
|
if (! this.isValidSample(fastCandidates)) {
|
|
return {status: EdgeStatus.AR_UNKNOWN};
|
|
}
|
|
// if(quality == EdgeDetectQuality.FAST){
|
|
// edges = fastCandidates; // todo: processing
|
|
// } else {
|
|
edgeCandidates = this.edgeDetect(image, fastCandidates);
|
|
console.log("edge candidates:", edgeCandidates)
|
|
bars = this.edgePostprocess(edgeCandidates, this.conf.canvas.height);
|
|
console.log("bars:", bars)
|
|
|
|
// }
|
|
} else {
|
|
bars = this.pillarTest(image) ? {status: EdgeStatus.AR_KNOWN} : {status: EdgeStatus.AR_UNKNOWN};
|
|
}
|
|
|
|
return bars;
|
|
}
|
|
|
|
findCandidates(image, sampleCols, guardLineOut){
|
|
try {
|
|
let upper_top, upper_bottom, lower_top, lower_bottom;
|
|
|
|
// const cols_a = sampleCols.slice(0);
|
|
const cols_a = new Array(sampleCols.length);
|
|
const res_top = [];
|
|
|
|
for (let i = 0; i < cols_a.length; i++) {
|
|
cols_a[i] = {
|
|
id: i,
|
|
value: sampleCols[i],
|
|
};
|
|
}
|
|
|
|
const cols_b = cols_a.slice(0);
|
|
const res_bottom = [];
|
|
|
|
// console.log("[EdgeDetect::findCandidates] cols a, b (initial):", cols_a, cols_b);
|
|
|
|
|
|
this.colsThreshold = sampleCols.length * this.settings.active.arDetect.edgeDetection.minColsForSearch;
|
|
if (this.colsThreshold == 0)
|
|
this.colsThreshold = 1;
|
|
|
|
this.blackbarThreshold = this.conf.blackLevel + this.settings.active.arDetect.blackbar.threshold;
|
|
this.imageThreshold = this.blackbarThreshold + this.settings.active.arDetect.blackbar.imageThreshold;
|
|
|
|
// if guardline didn't fail and imageDetect did, we don't have to check the upper few pixels
|
|
// but only if upper and lower edge are defined. If they're not, we need to check full height
|
|
if(guardLineOut){
|
|
if(guardLineOut.imageFail && !guardLineOut.blackbarFail && this.conf.guardLine.blackbar.top) {
|
|
upper_top = this.conf.guardLine.blackbar.top;
|
|
upper_bottom = this.conf.canvas.height >> 1;
|
|
lower_top = upper_bottom;
|
|
lower_bottom = this.conf.guardLine.blackbar.bottom;
|
|
} else if (! guardLineOut.imageFail && !guardLineOut.blackbarFail && this.conf.guardLine.blackbar.top) {
|
|
// ta primer se lahko zgodi tudi zaradi kakšnega logotipa. Ker nočemo, da nam en jeben
|
|
// logotip vsili reset razmerja stranic, se naredimo hrvata in vzamemo nekaj varnostnega
|
|
// pasu preko točke, ki jo označuje guardLine.blackbar. Recimo 1/8 višine platna na vsaki strani.
|
|
// a logo could falsely trigger this case, so we need to add some extra margins past
|
|
// the point marked by guardLine.blackbar. Let's say 1/8 of canvas height on either side.
|
|
upper_top = 0;
|
|
upper_bottom = this.conf.guardLine.blackbar.top + (this.conf.canvas.height >> 3);
|
|
lower_top = this.conf.guardLine.blackbar.bottom - (this.conf.canvas.height >> 3);
|
|
lower_bottom = this.conf.canvas.height - 1;
|
|
} else {
|
|
upper_top = 0;
|
|
upper_bottom = (this.conf.canvas.height >> 1) /*- parseInt(this.conf.canvas.height * this.settings.active.arDetect.edgeDetection.middleIgnoredArea);*/
|
|
lower_top = (this.conf.canvas.height >> 1) /*+ parseInt(this.conf.canvas.height * this.settings.active.arDetect.edgeDetection.middleIgnoredArea);*/
|
|
lower_bottom = this.conf.canvas.height - 1;
|
|
}
|
|
} else{
|
|
upper_top = 0;
|
|
upper_bottom = (this.conf.canvas.height >> 1) /*- parseInt(this.conf.canvas.height * this.settings.active.arDetect.edgeDetection.middleIgnoredArea);*/
|
|
lower_top = (this.conf.canvas.height >> 1) /*+ parseInt(this.conf.canvas.height * this.settings.active.arDetect.edgeDetection.middleIgnoredArea);*/
|
|
lower_bottom = this.conf.canvas.height - 1;
|
|
}
|
|
|
|
if(Debug.debug && Debug.debugArDetect){
|
|
console.log("[EdgeDetect::findCandidates] searching for candidates on ranges", upper_top, "<->", upper_bottom, ";", lower_top, "<->", lower_bottom);
|
|
}
|
|
|
|
var upper_top_corrected = upper_top * this.conf.canvasImageDataRowLength;
|
|
var upper_bottom_corrected = upper_bottom * this.conf.canvasImageDataRowLength;
|
|
var lower_top_corrected = lower_top * this.conf.canvasImageDataRowLength;
|
|
var lower_bottom_corrected = lower_bottom * this.conf.canvasImageDataRowLength;
|
|
|
|
// if(Debug.debugCanvas.enabled){
|
|
// this._columnTest_dbgc(image, upper_top_corrected, upper_bottom_corrected, cols_a, res_top, false);
|
|
// this._columnTest_dbgc(image, lower_top_corrected, lower_bottom_corrected, cols_b, res_bottom, true);
|
|
// } else {
|
|
this._columnTest3_cross(image, upper_top_corrected, upper_bottom_corrected, cols_a, res_top, false);
|
|
this._columnTest3_cross(image, lower_top_corrected, lower_bottom_corrected, cols_b, res_bottom, true);
|
|
// }
|
|
|
|
if (Debug.debug && Debug.debugArDetect){
|
|
console.log("[EdgeDetect::findCandidates] candidates found -->", {res_top: res_top, res_bottom: res_bottom});
|
|
}
|
|
|
|
|
|
return {res_top: res_top, res_bottom: res_bottom};
|
|
|
|
} catch (e) {
|
|
console.log("[EdgeDetect::findCandidates] there was an error", e);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// dont call the following outside of this class
|
|
|
|
isValidSample(samples) {
|
|
// NOTE: this is very simple and will need to be reworked in case we ever
|
|
// go for quorum-based edge detection. (Probably not gonna happen)
|
|
const topPoint = {
|
|
row: this.conf.canvas.height,
|
|
gradient: false, // does current row have a gradient sample
|
|
noGradient: false, // does current row have 100% confirmed edge sample
|
|
}
|
|
const bottomPoint = {
|
|
row: 0,
|
|
gradient: false,
|
|
noGradient: false,
|
|
}
|
|
|
|
// process the top row
|
|
for (let i = 0; i < samples.res_top.length; i++) {
|
|
// if we find new highest point, we reset gradient and noGradient
|
|
if (samples.res_top[i].black < topPoint.row) {
|
|
topPoint.row = samples.res_top[i].black;
|
|
topPoint.gradient = false;
|
|
topPoint.noGradient = false;
|
|
}
|
|
|
|
// if we're in the top row, we update gradient/no gradient
|
|
// we track gradient and nogradient points separately
|
|
if (samples.res_top[i].black === topPoint.row) {
|
|
if (samples.res_top[i].hasGradient) {
|
|
topPoint.gradient = true;
|
|
} else {
|
|
topPoint.noGradient = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// process the bottom row
|
|
for (let i = 0; i < samples.res_top.length; i++) {
|
|
// if we find new highest point, we reset gradient and noGradient
|
|
if (samples.res_top[i].black > bottomPoint.row) {
|
|
bottomPoint.row = samples.res_top[i].black;
|
|
bottomPoint.gradient = false;
|
|
bottomPoint.noGradient = false;
|
|
}
|
|
|
|
// if we're in the top row, we update gradient/no gradient
|
|
// we track gradient and nogradient points separately
|
|
if (samples.res_top[i].black === bottomPoint.row) {
|
|
if (samples.res_top[i].hasGradient) {
|
|
bottomPoint.gradient = true;
|
|
} else {
|
|
bottomPoint.noGradient = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (topPoint.noGradient && bottomPoint.noGradient) {
|
|
return true;
|
|
}
|
|
|
|
|
|
if (! topPoint.noGradient) {
|
|
if (! bottomPoint.noGradient) {
|
|
// top sample in both is a gradient with no solid sample present in that row
|
|
// this means validation failed:
|
|
return false;
|
|
} else {
|
|
// if top gradient-only sample is closer to the edge than the bottom sample,
|
|
// validation also fails. Otherwise, we can assume success.
|
|
return (topPoint.row >= this.conf.canvas.height - bottomPoint.row);
|
|
}
|
|
}
|
|
|
|
// this is the only combination that we have to handle at this point. Because we're
|
|
// here, we know that the top row is reasonably gradient-free. We only need to check
|
|
// whether gradient-only result of bottom row is closer to the edge than than the top
|
|
// sample.
|
|
if (! bottomPoint.noGradient) {
|
|
return (topPoint.row < this.conf.canvas.height - bottomPoint.row);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
edgeDetect(image, samples){
|
|
var edgeCandidatesTop = {count: 0};
|
|
var edgeCandidatesBottom = {count: 0};
|
|
|
|
var detections;
|
|
var canvasWidth = this.conf.canvas.width;
|
|
var canvasHeight = this.conf.canvas.height;
|
|
|
|
var sampleStart, sampleEnd, loopEnd;
|
|
var sampleRow_black, sampleRow_color;
|
|
|
|
var blackEdgeViolation = false;
|
|
|
|
var topEdgeCount = 0;
|
|
var bottomEdgeCount = 0;
|
|
|
|
try {
|
|
for (const sample of samples.res_top){
|
|
blackEdgeViolation = false; // reset this
|
|
|
|
// determine our bounds. Note that sample.col is _not_ corrected for imageData, but halfSample is
|
|
sampleStart = (sample.col << 2) - this.halfSample;
|
|
|
|
if(sampleStart < 0)
|
|
sampleStart = 0;
|
|
|
|
sampleEnd = sampleStart + this.sampleWidthBase;
|
|
if(sampleEnd > this.conf.canvasImageDataRowLength)
|
|
sampleEnd = this.conf.canvasImageDataRowLength;
|
|
|
|
// calculate row offsets for imageData array
|
|
sampleRow_black = (sample.black - this.settings.active.arDetect.edgeDetection.edgeTolerancePx - 1) * this.conf.canvasImageDataRowLength;
|
|
sampleRow_color = (sample.black + this.settings.active.arDetect.edgeDetection.edgeTolerancePx) * this.conf.canvasImageDataRowLength;
|
|
|
|
// že ena kršitev črnega roba pomeni, da kandidat ni primeren
|
|
// even a single black edge violation means the candidate is not an edge
|
|
loopEnd = sampleRow_black + sampleEnd;
|
|
|
|
if(Debug.debugCanvas.enabled){
|
|
blackEdgeViolation = this._blackbarTest_dbg(image, sampleRow_black + sampleStart, loopEnd);
|
|
} else {
|
|
blackEdgeViolation = this._blackbarTest(image, sampleRow_black + sampleStart, loopEnd);
|
|
}
|
|
|
|
// če je bila črna črta skrunjena, preverimo naslednjega kandidata
|
|
// if we failed, we continue our search with the next candidate
|
|
if (blackEdgeViolation) {
|
|
continue;
|
|
}
|
|
|
|
detections = 0;
|
|
loopEnd = sampleRow_color + sampleEnd;
|
|
|
|
if(Debug.debugCanvas.enabled) {
|
|
this._imageTest_dbg(image, sampleRow_color + sampleStart, loopEnd, sample.black, edgeCandidatesTop)
|
|
} else {
|
|
this._imageTest(image, sampleRow_color + sampleStart, loopEnd, sample.black, edgeCandidatesTop);
|
|
}
|
|
}
|
|
|
|
for (const sample of samples.res_bottom){
|
|
blackEdgeViolation = false; // reset this
|
|
|
|
// determine our bounds. Note that sample.col is _not_ corrected for imageData, but this.halfSample is
|
|
sampleStart = (sample.col << 2) - this.halfSample;
|
|
|
|
if(sampleStart < 0)
|
|
sampleStart = 0;
|
|
|
|
sampleEnd = sampleStart + this.sampleWidthBase;
|
|
if(sampleEnd > this.conf.canvasImageDataRowLength)
|
|
sampleEnd = this.conf.canvasImageDataRowLength;
|
|
|
|
// calculate row offsets for imageData array
|
|
sampleRow_black = (sample.black + this.settings.active.arDetect.edgeDetection.edgeTolerancePx + 1) * this.conf.canvasImageDataRowLength;
|
|
sampleRow_color = (sample.black - this.settings.active.arDetect.edgeDetection.edgeTolerancePx) * this.conf.canvasImageDataRowLength;
|
|
|
|
// že ena kršitev črnega roba pomeni, da kandidat ni primeren
|
|
// even a single black edge violation means the candidate is not an edge
|
|
loopEnd = sampleRow_black + sampleEnd;
|
|
|
|
if(Debug.debugCanvas.enabled){
|
|
blackEdgeViolation = this._blackbarTest_dbg(image, sampleRow_black + sampleStart, loopEnd);
|
|
} else {
|
|
blackEdgeViolation = this._blackbarTest(image, sampleRow_black + sampleStart, loopEnd);
|
|
}
|
|
|
|
// če je bila črna črta skrunjena, preverimo naslednjega kandidata
|
|
// if we failed, we continue our search with the next candidate
|
|
if (blackEdgeViolation) {
|
|
continue;
|
|
}
|
|
|
|
detections = 0;
|
|
loopEnd = sampleRow_color + sampleEnd;
|
|
|
|
if(Debug.debugCanvas.enabled) {
|
|
this._imageTest_dbg(image, sampleRow_color + sampleStart, loopEnd, sample.black, edgeCandidatesBottom);
|
|
} else {
|
|
this._imageTest(image, sampleRow_color + sampleStart, loopEnd, sample.black, edgeCandidatesBottom);
|
|
}
|
|
}
|
|
} catch (e) {
|
|
console.log("\n\nuwu fucky wucky:", e, "\n\n")
|
|
}
|
|
|
|
return {
|
|
edgeCandidatesTop: edgeCandidatesTop,
|
|
edgeCandidatesTopCount: edgeCandidatesTop.count,
|
|
edgeCandidatesBottom: edgeCandidatesBottom,
|
|
edgeCandidatesBottomCount: edgeCandidatesBottom.count
|
|
};
|
|
}
|
|
|
|
edgePostprocess(edges){
|
|
var edgesTop = [];
|
|
var edgesBottom = [];
|
|
var alignMargin = this.conf.canvas.height * this.settings.active.arDetect.allowedMisaligned;
|
|
|
|
var missingEdge = edges.edgeCandidatesTopCount == 0 || edges.edgeCandidatesBottomCount == 0;
|
|
|
|
// pretvorimo objekt v tabelo
|
|
// convert objects to array
|
|
|
|
delete(edges.edgeCandidatesTop.count);
|
|
delete(edges.edgeCandidatesBottom.count);
|
|
|
|
if( edges.edgeCandidatesTopCount > 0){
|
|
for(var e in edges.edgeCandidatesTop){
|
|
var edge = edges.edgeCandidatesTop[e];
|
|
edgesTop.push({
|
|
distance: edge.offset,
|
|
absolute: edge.offset,
|
|
count: edge.count
|
|
});
|
|
}
|
|
}
|
|
|
|
if( edges.edgeCandidatesBottomCount > 0){
|
|
for(var e in edges.edgeCandidatesBottom){
|
|
var edge = edges.edgeCandidatesBottom[e];
|
|
edgesBottom.push({
|
|
distance: this.conf.canvas.height - edge.offset,
|
|
absolute: edge.offset,
|
|
count: edge.count
|
|
});
|
|
}
|
|
}
|
|
|
|
// sort by distance
|
|
edgesTop = edgesTop.sort((a,b) => {return a.distance - b.distance});
|
|
edgesBottom = edgesBottom.sort((a,b) => {return a.distance - b.distance});
|
|
|
|
// če za vsako stran (zgoraj in spodaj) poznamo vsaj enega kandidata, potem lahko preverimo nekaj
|
|
// stvari
|
|
|
|
if(! missingEdge ){
|
|
// predvidevamo, da je logo zgoraj ali spodaj, nikakor pa ne na obeh straneh hkrati.
|
|
// če kanal logotipa/watermarka ni vključil v video, potem si bosta razdaliji (edge.distance) prvih ključev
|
|
// zgornjega in spodnjega roba približno enaki
|
|
//
|
|
// we'll assume that no youtube channel is rude enough to put channel logo/watermark both on top and the bottom
|
|
// of the video. If logo's not included in the video, distances (edge.distance) of the first two keys should be
|
|
// roughly equal. Let's check for that.
|
|
if( edgesTop[0].distance >= edgesBottom[0].distance - alignMargin &&
|
|
edgesTop[0].distance <= edgesBottom[0].distance + alignMargin ){
|
|
|
|
var blackbarWidth = edgesTop[0].distance > edgesBottom[0].distance ?
|
|
edgesTop[0].distance : edgesBottom[0].distance;
|
|
|
|
return {
|
|
status: EdgeStatus.AR_KNOWN,
|
|
blackbarWidth: blackbarWidth,
|
|
guardLineTop: edgesTop[0].distance,
|
|
guardLineBottom: edgesBottom[0].absolute,
|
|
|
|
top: edgesTop[0].distance,
|
|
bottom: edgesBottom[0].distance
|
|
};
|
|
}
|
|
|
|
// torej, lahko da je na sliki watermark. Lahko, da je slika samo ornh črna. Najprej preverimo za watermark
|
|
// it could be watermark. It could be a dark frame. Let's check for watermark first.
|
|
if( edgesTop[0].distance < edgesBottom[0].distance &&
|
|
edgesTop[0].count < edgesBottom[0].count &&
|
|
edgesTop[0].count < this.conf.sampleCols.length * this.settings.active.arDetect.edgeDetection.logoThreshold){
|
|
// možno, da je watermark zgoraj. Preverimo, če se kateri od drugih potencialnih robov na zgornjem robu
|
|
// ujema s prvim spodnjim (+/- variance). Če je temu tako, potem bo verjetno watermark. Logo mora imeti
|
|
// manj vzorcev kot navaden rob.
|
|
|
|
if(edgesTop[0].length > 1){
|
|
var lowMargin = edgesBottom[0].distance - alignMargin;
|
|
var highMargin = edgesBottom[0].distance + alignMargin;
|
|
|
|
for(var i = 1; i < edgesTop.length; i++){
|
|
if(edgesTop[i].distance >= lowMargin && edgesTop[i].distance <= highMargin){
|
|
// dobili smo dejanski rob. vrnimo ga
|
|
// we found the actual edge. let's return that.
|
|
var blackbarWidth = edgesTop[i].distance > edgesBottom[0].distance ?
|
|
edgesTop[i].distance : edgesBottom[0].distance;
|
|
|
|
return {
|
|
status: EdgeStatus.AR_KNOWN,
|
|
blackbarWidth: blackbarWidth,
|
|
guardLineTop: edgesTop[i].distance,
|
|
guardLineBottom: edgesBottom[0].absolute,
|
|
|
|
top: edgesTop[i].distance,
|
|
bottom: edgesBottom[0].distance
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if( edgesBottom[0].distance < edgesTop[0].distance &&
|
|
edgesBottom[0].count < edgesTop[0].count &&
|
|
edgesBottom[0].count <this.conf.sampleCols.length * this.settings.active.arDetect.edgeDetection.logoThreshold){
|
|
|
|
if(edgesBottom[0].length > 1){
|
|
var lowMargin = edgesTop[0].distance - alignMargin;
|
|
var highMargin = edgesTop[0].distance + alignMargin;
|
|
|
|
for(var i = 1; i < edgesBottom.length; i++){
|
|
if(edgesBottom[i].distance >= lowMargin && edgesTop[i].distance <= highMargin){
|
|
// dobili smo dejanski rob. vrnimo ga
|
|
// we found the actual edge. let's return that.
|
|
var blackbarWidth = edgesBottom[i].distance > edgesTop[0].distance ?
|
|
edgesBottom[i].distance : edgesTop[0].distance;
|
|
|
|
return {
|
|
status: EdgeStatus.AR_KNOWN,
|
|
blackbarWidth: blackbarWidth,
|
|
guardLineTop: edgesTop[0].distance,
|
|
guardLineBottom: edgesBottom[0].absolute,
|
|
|
|
top: edgesTop[0].distance,
|
|
bottom: edgesBottom[i].distance
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else{
|
|
// zgornjega ali spodnjega roba nismo zaznali. Imamo še en trik, s katerim lahko poskusimo
|
|
// določiti razmerje stranic
|
|
// either the top or the bottom edge remains undetected, but we have one more trick that we
|
|
// can try. It also tries to work around logos.
|
|
|
|
var edgeDetectionThreshold = this.conf.sampleCols.length * this.settings.active.arDetect.edgeDetection.singleSideConfirmationThreshold;
|
|
|
|
if(edges.edgeCandidatesTopCount == 0 && edges.edgeCandidatesBottomCount != 0){
|
|
for(var edge of edgesBottom){
|
|
if(edge.count >= edgeDetectionThreshold)
|
|
return {
|
|
status: EdgeStatus.AR_KNOWN,
|
|
blackbarWidth: edge.distance,
|
|
guardLineTop: null,
|
|
guardLineBottom: edge.bottom,
|
|
|
|
top: edge.distance,
|
|
bottom: edge.distance
|
|
}
|
|
}
|
|
}
|
|
if(edges.edgeCandidatesTopCount != 0 && edges.edgeCandidatesBottomCount == 0){
|
|
for(var edge of edgesTop){
|
|
if(edge.count >= edgeDetectionThreshold)
|
|
return {
|
|
status: EdgeStatus.AR_KNOWN,
|
|
blackbarWidth: edge.distance,
|
|
guardLineTop: edge.top,
|
|
guardLineBottom: null,
|
|
|
|
top: edge.distance,
|
|
bottom: edge.distance
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// če pridemo do sem, nam ni uspelo nič. Razmerje stranic ni znano
|
|
// if we reach this bit, we have failed in determining aspect ratio. It remains unknown.
|
|
return {status: EdgeStatus.AR_UNKNOWN}
|
|
}
|
|
|
|
pillarTest(image){
|
|
// preverimo, če na sliki obstajajo navpične črne obrobe. Vrne 'true' če so zaznane (in če so približno enako debele), 'false' sicer.
|
|
// true vrne tudi, če zaznamo preveč črnine.
|
|
// <==XX(::::}----{::::)XX==>
|
|
// checks the image for presence of vertical pillars. Less accurate than 'find blackbar limits'. If we find a non-black object that's
|
|
// roughly centered, we return true. Otherwise we return false.
|
|
// we also return true if we detect too much black
|
|
|
|
var blackbarThreshold, upper, lower;
|
|
blackbarThreshold = this.conf.blackLevel + this.settings.active.arDetect.blackbar.threshold;
|
|
|
|
|
|
var middleRowStart = (this.conf.canvas.height >> 1) * this.conf.canvas.width;
|
|
var middleRowEnd = middleRowStart + this.conf.canvas.width - 1;
|
|
|
|
var rowStart = middleRowStart << 2;
|
|
var midpoint = (middleRowStart + (this.conf.canvas.width >> 1)) << 2
|
|
var rowEnd = middleRowEnd << 2;
|
|
|
|
var edge_left = -1, edge_right = -1;
|
|
|
|
// preverimo na levi strani
|
|
// let's check for edge on the left side
|
|
for(var i = rowStart; i < midpoint; i+=4){
|
|
if(image[i] > blackbarThreshold || image[i+1] > blackbarThreshold || image[i+2] > blackbarThreshold){
|
|
edge_left = (i - rowStart) >> 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// preverimo na desni strani
|
|
// check on the right
|
|
for(var i = rowEnd; i > midpoint; i-= 4){
|
|
if(image[i] > blackbarThreshold || image[i+1] > blackbarThreshold || image[i+2] > blackbarThreshold){
|
|
edge_right = this.conf.canvas.width - ((i - rowStart) >> 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// če je katerikoli -1, potem imamo preveč črnine
|
|
// we probably have too much black if either of those two is -1
|
|
if(edge_left == -1 || edge_right == -1){
|
|
return true;
|
|
}
|
|
|
|
// če sta oba robova v mejah merske napake, potem vrnemo 'false'
|
|
// if both edges resemble rounding error, we retunr 'false'
|
|
if(edge_left < this.settings.active.arDetect.pillarTest.ignoreThinPillarsPx && edge_right < this.settings.active.arDetect.pillarTest.ignoreThinPillarsPx){
|
|
return false;
|
|
}
|
|
|
|
var edgeError = this.settings.active.arDetect.pillarTest.allowMisaligned;
|
|
var error_low = 1 - edgeError;
|
|
var error_hi = 1 + edgeError;
|
|
|
|
// če sta 'edge_left' in 'edge_right' podobna/v mejah merske napake, potem vrnemo true — lahko da smo našli logo na sredini zaslona
|
|
// if 'edge_left' and 'edge_right' are similar enough to each other, we return true. If we found a logo in a black frame, we could
|
|
// crop too eagerly
|
|
if( (edge_left * error_low) < edge_right &&
|
|
(edge_left * error_hi) > edge_right ){
|
|
return true;
|
|
}
|
|
|
|
// če se ne zgodi nič od neštetega, potem nismo našli problemov
|
|
// if none of the above, we haven't found a problem
|
|
return false;
|
|
}
|
|
|
|
|
|
// pomožne funkcije
|
|
// helper functions
|
|
|
|
|
|
// Column tests
|
|
// Here's a fun thing. I reckon this bit of code could potentially run often enough that L1/L2 cache misses
|
|
// could really start to add up (especially if I figure the RAM usage problem which causes insane RAM usage
|
|
// if you run this 30-60 times a second)
|
|
//
|
|
// so here's two functions. _columnTest3_cross has some optimization that tries to minimize cache misses,
|
|
// but the problem is that I don't actually know 100% what I'm doing so it might be pointless. It scans the
|
|
// image array line-by-line, rather than column-by-column. This has some advantages (e.g. we can end the
|
|
// search for letterbox early), and some disadvantages (the code is a mess)
|
|
//
|
|
// some time later down the line, I might actually implement _columnTest3_singleCol, which does shit in the
|
|
// opposite direction (column-by-column rather than row-by-row)
|
|
_columnTest3_cross(image, top, bottom, colsIn, colsOut, reverseSearchDirection) {
|
|
// this function is such a /r/badcode bait.
|
|
//
|
|
// this is the shit we do to avoid function calls and one extra if sentence/code repetition
|
|
// pretend I was drunk when I wrote this
|
|
let tmpI, edgeDetectCount = 0, edgeDetectColsLeft = colsIn.length;
|
|
let tmpVal = 0;
|
|
let increment, arrayStart, arrayEnd;
|
|
|
|
let loopCond, loopComparator, loopIndex;
|
|
|
|
if (reverseSearchDirection) {
|
|
increment = -this.conf.canvasImageDataRowLength;
|
|
arrayStart = bottom - this.conf.canvasImageDataRowLength;
|
|
arrayEnd = top;
|
|
|
|
// this is a hack so we get pointer-like things rather than values
|
|
loopCond = {compare: {i: arrayEnd}, index: {i: 0}}
|
|
loopComparator = loopCond.index;
|
|
loopIndex = loopCond.compare;
|
|
} else {
|
|
increment = this.conf.canvasImageDataRowLength;
|
|
arrayStart = top;
|
|
arrayEnd = bottom;
|
|
|
|
// this is a hack so we get pointer-like things rather than values
|
|
loopCond = {compare: {i: arrayEnd}, index: {i: 0}}
|
|
loopComparator = loopCond.compare;
|
|
loopIndex = loopCond.index;
|
|
}
|
|
|
|
// keep temporary column data in a separate column array:
|
|
const colsTmp = new Array(colsIn.length);
|
|
for (let i = 0; i < colsTmp.length; i++) {
|
|
colsTmp[i] = {
|
|
col: -1,
|
|
blackFound: false,
|
|
imageFound: false, // misleading name — also true if we ran over gradientSampleSize pixels from image
|
|
// whether that actually count as an image depends on how aggressive gradientDetection is
|
|
hasGradient: false,
|
|
blackRow: -1,
|
|
imageRow: -1,
|
|
lastValue: -1,
|
|
diffIndex: 0,
|
|
diffs: new Array(this.settings.active.arDetect.blackbar.gradientSampleSize).fill(0)
|
|
}
|
|
}
|
|
|
|
// Things to keep in mind: loopCond.index.i is always index.
|
|
// loopIndex.i could actually be loopCond.compare.i (comparator) and
|
|
// loopComparator.i could actually be loopCond.index.i (real index)
|
|
for (loopCond.index.i = arrayStart; loopIndex.i < loopComparator.i; loopCond.index.i += increment) {
|
|
|
|
// če smo našli toliko mejnih točk, da s preostalimi stolpci ne moremo doseči naše meje, potem prenehamo
|
|
// if we found enough edge points so that we couldn't top that limit with remaining columns, then we stop
|
|
// searching forward
|
|
edgeDetectColsLeft -= edgeDetectCount;
|
|
if (edgeDetectColsLeft < this.colsThreshold || edgeDetectCount >= this.colsThreshold) {
|
|
break;
|
|
}
|
|
edgeDetectCount = 0;
|
|
|
|
|
|
// če v eni vrstici dobimo dovolj točk, ki grejo čez našo mejo zaznavanja, potem bomo nehali
|
|
// the first line that goes over our detection treshold wins
|
|
for (let c = 0; c < colsIn.length; c++) {
|
|
|
|
// there's really no point in checking this column if we already found image point
|
|
if (colsTmp[c].imageFound) {
|
|
continue;
|
|
}
|
|
|
|
tmpI = loopCond.index.i + (colsIn[c].value << 2);
|
|
|
|
// najprej preverimo, če je piksel presegel mejo črnega robu
|
|
// first we check whether blackbarThreshold was exceeded
|
|
if (! colsTmp[c].blackFound) {
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
colsTmp[c].col = colsIn[c].value;
|
|
colsTmp[c].blackFound = true;
|
|
colsTmp[c].blackRow = ~~(loopCond.index.i / this.conf.canvasImageDataRowLength);
|
|
|
|
// prisili, da se zanka izvede še enkrat ter preveri,
|
|
// ali trenuten piksel preseže tudi imageThreshold
|
|
//
|
|
// force the loop to repeat this step and check whether
|
|
// current pixel exceeds imageThreshold as well
|
|
c--;
|
|
continue;
|
|
}
|
|
} else {
|
|
// če smo dobili piksel, ki presega blackbar, preverimo do gradientSampleSize dodatnih pikslov.
|
|
// ko dobimo piksel čez imageTreshold oz. gradientSampleSize, nastavimo imageFound. Ali je to veljavno
|
|
// bomo preverili v koraku analize, ki sledi kasneje
|
|
//
|
|
// if we found a pixel that exceeds blackbar, we check up to gradientSampleSize additional pixels.
|
|
// when we get a pixel over imageTreshold or gradientSampleSize, we flip the imageFound. We'll bother
|
|
// with whether that's legit in analysis step, which will follow soon (tm)
|
|
|
|
if (image[tmpI] > this.imageThreshold ||
|
|
image[tmpI + 1] > this.imageThreshold ||
|
|
image[tmpI + 2] > this.imageThreshold ){
|
|
|
|
colsTmp[c].imageRow = ~~(loopCond.index.i / this.conf.canvasImageDataRowLength)
|
|
|
|
|
|
colsTmp[c].imageFound = true;
|
|
edgeDetectCount++;
|
|
}
|
|
|
|
// v vsakem primeru shranimo razliko med prejšnjim in trenutnim pikslom za kasnejšo analizo
|
|
// in any case, save the difference between the current and the previous pixel for later analysis
|
|
|
|
colsTmp[c].lastValue = image[tmpI] + image[tmpI+1] + image[tmpI+2];
|
|
if (colsTmp[c].diffIndex !== 0) {
|
|
colsTmp[c].diffs[colsTmp[c].diffIndex] = colsTmp[c].lastValue - colsTmp[c].diffs[colsTmp[c].diffIndex - 1];
|
|
}
|
|
|
|
colsTmp[c].diffIndex++;
|
|
if (colsTmp[c].diffIndex > this.settings.active.arDetect.blackbar.gradientSampleSize) {
|
|
colsTmp[c].imageFound = true;
|
|
continue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// sprocesirajmo rezultate
|
|
// let's process our results
|
|
for (const c of colsTmp) {
|
|
if (c.blackFound) {
|
|
if (this.settings.active.arDetect.blackbar.antiGradientMode === AntiGradientMode.Disabled) {
|
|
// if gradient detection is disabled, we treat such columns as detections/not gradient
|
|
}
|
|
if (c.imageFound) {
|
|
if (c.imageRow - c.blackRow <= this.settings.active.arDetect.blackbar.gradientThreshold) {
|
|
// this is within our margin of error. Colums like this are auto-accepted
|
|
colsOut.push({
|
|
col: c.col,
|
|
black: c.blackRow
|
|
});
|
|
continue;
|
|
} else {
|
|
tmpVal = 0;
|
|
|
|
let i;
|
|
// if we detected gradient, we'll analyse whether gradient is legit
|
|
for (i = 0; i < c.diffIndex; i++) {
|
|
tmpVal += c.diffs[i];
|
|
|
|
// if difference is negative, we aren't looking at a gradient
|
|
if (c.diffs[i] < this.settings.active.arDetect.blackbar.gradientNegativeTreshold) {
|
|
colsOut.push({
|
|
col: c.col,
|
|
black: c.blackRow
|
|
});
|
|
break;
|
|
}
|
|
|
|
// if difference is too big, we assume we aren't looking at a gradient
|
|
if (c.diffs[i] > this.settings.active.arDetect.blackbar.maxGradient) {
|
|
colsOut.push({
|
|
col: c.col,
|
|
black: c.blackRow
|
|
});
|
|
break;
|
|
}
|
|
|
|
// in case neither of the previous options happens, we might have a gradient.
|
|
// Since this column is sus af, we don't include it for further examination/
|
|
// determining aspect ratio
|
|
}
|
|
|
|
// if we didn't find any "not a gradient" diffs, we check for standard deviation
|
|
if (i >= c.diffIndex && c.diffIndex > 1) {
|
|
tmpVal /= c.diffIndex; // tmpVal is now average
|
|
let squareSum = 0, stdev = 0;
|
|
for (i = 0; i < c.diffIndex; i++) {
|
|
squareSum += Math.pow((c.diffs[i] - tmpVal), 2)
|
|
}
|
|
stdev = Math.sqrt((squareSum / (c.diffIndex - 1)));
|
|
|
|
// if standard deviation is too big, we're not on a gradient (prolly)
|
|
if (stdev > this.settings.active.arDetect.blackbar.gradientMaxSD) {
|
|
colsOut.push({
|
|
col: c.col,
|
|
black: c.blackRow
|
|
});
|
|
continue;
|
|
} else {
|
|
// this means we're on a gradient. We still push an object to colsOut — this is
|
|
// important. While "bad" detection doesn't help us with determining the aspect
|
|
// ratio, bad detections can prevent us from setting aspect ratio incorrectly.
|
|
// for example, if we detect a gradient closer to the frame edge than a proper
|
|
// edge, we still know that cropping based on the confirmed edges would crop too
|
|
// much of the frame. In situations like this, we must ignore the results — and
|
|
// since results are handled outside of this function, we need to pass an
|
|
// additional parameter that allows us to distinguish real results from noise.
|
|
colsOut.push({
|
|
col: c.col,
|
|
black: c.blackRow,
|
|
hasGradient: true,
|
|
});
|
|
continue;
|
|
}
|
|
} else {
|
|
// in this case, we aren't looking at a gradient. We also aren't looking at a
|
|
// valid column
|
|
continue;
|
|
}
|
|
}
|
|
} else {
|
|
// we have blackbar but we haven't found a point that goes over imageTreshold.
|
|
// how these cases are handled is determiend by what antiGradientMode we're using.
|
|
// strict mode — treat as gradient. Lax mode — treat as not gradient
|
|
if (this.settings.active.arDetect.blackbar.antiGradientMode === AntiGradientMode.Lax) {
|
|
colsOut.push({
|
|
col: c.col,
|
|
black: c.blackRow
|
|
});
|
|
continue;
|
|
} else {
|
|
colsOut.push({
|
|
col: c.col,
|
|
black: c.blackRow,
|
|
hasGradient: true,
|
|
});
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
_columnTest3_singleCol(image, top, bottom, colsIn, colsOut, reverseSearchDirection) {
|
|
|
|
}
|
|
|
|
_columnTest2(image, top, bottom, colsIn, colsOut, reverseSearchDirection) {
|
|
let tmpI;
|
|
let lastTmpI = 0;
|
|
let edgeDetectCount = 0;
|
|
for(const c in colsOut) {
|
|
c.diffs = [];
|
|
}
|
|
if (reverseSearchDirection) {
|
|
if (this.settings.active.arDetect.blackbar.antiGradientMode === AntiGradientMode.Disabled) {
|
|
// todo: remove gradient detection code from this branch
|
|
for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){
|
|
for(let c = 0; c < colsIn.length; c++){
|
|
if (colsIn[c].blackFound && colsIn[c].imageFound) {
|
|
// če smo našli obe točki, potem ne pregledujemo več.
|
|
// if we found both points, we don't continue anymore
|
|
continue;
|
|
}
|
|
tmpI = i + (colsIn[c].value << 2);
|
|
|
|
// najprej preverimo, če je piksel presegel mejo črnega robu
|
|
// first we check whether blackbarThreshold was exceeded
|
|
if(! colsIn[c].blackFound) {
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
colsOut[c].black = (i / this.conf.canvasImageDataRowLength) - 1;
|
|
colsOut[c].col = colsIn[c].value;
|
|
colsIn[c].blackFound = 1;
|
|
|
|
// prisili, da se zanka izvede še enkrat ter preveri,
|
|
// ali trenuten piksel preseže tudi imageThreshold
|
|
//
|
|
// force the loop to repeat this step and check whether
|
|
// current pixel exceeds imageThreshold as well
|
|
c--;
|
|
continue;
|
|
}
|
|
} else {
|
|
if (colsIn[c].blackFound++ > this.settings.active.arDetect.blackbar.gradientSampleSize) {
|
|
colsIn[c].imageFound = true;
|
|
continue;
|
|
}
|
|
// zatem preverimo, če je piksel presegel mejo, po kateri sklepamo, da
|
|
// predstavlja sliko. Preverimo samo, če smo v stolpcu že presegli
|
|
// blackThreshold
|
|
//
|
|
// then we check whether pixel exceeded imageThreshold
|
|
if (image[tmpI] > this.imageThreshold ||
|
|
image[tmpI + 1] > this.imageThreshold ||
|
|
image[tmpI + 2] > this.imageThreshold ){
|
|
|
|
colsOut[c].image = (i / this.conf.canvasImageDataRowLength)
|
|
colsIn[c].imageFound = true;
|
|
edgeDetectCount++;
|
|
}
|
|
}
|
|
}
|
|
if(edgeDetectCount >= this.colsThreshold) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// anti-gradient detection
|
|
for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){
|
|
for(let c = 0; c < colsIn.length; c++){
|
|
if (colsIn[c].blackFound && colsIn[c].imageFound) {
|
|
// če smo našli obe točki, potem ne pregledujemo več.
|
|
// if we found both points, we don't continue anymore.
|
|
|
|
if (colsIn[c].analysisDone) {
|
|
continue;
|
|
}
|
|
|
|
if (colsOut[c].diffs.length < 5) {
|
|
colsIn[c].analysisDone = true;
|
|
}
|
|
|
|
// average analysis — if steps between pixels are roughly equal, we're looking at a gradient
|
|
let sum_avg = 0;
|
|
for (let i = 2; i <= colsOut[c].diffs; i++) {
|
|
sum_avg += colsOut[c].diffs[i-1] - colsOut[c].diffs[i];
|
|
}
|
|
sum_avg /= colsOut[c].diffs.length - 2;
|
|
|
|
for (let i = 2; i <= colsOut[c].diffs; i++) {
|
|
sum_avg += colsOut[c].diffs[i-1] - colsOut[c].diffs[i];
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
tmpI = i + (colsIn[c].value << 2);
|
|
|
|
// najprej preverimo, če je piksel presegel mejo črnega robu
|
|
// first we check whether blackbarThreshold was exceeded
|
|
if(! colsIn[c].blackFound) {
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
colsOut[c].black = (i / this.conf.canvasImageDataRowLength) - 1;
|
|
colsOut[c].col = colsIn[c].value;
|
|
colsIn[c].blackFound = 1;
|
|
|
|
// prisili, da se zanka izvede še enkrat ter preveri,
|
|
// ali trenuten piksel preseže tudi imageThreshold
|
|
//
|
|
// force the loop to repeat this step and check whether
|
|
// current pixel exceeds imageThreshold as well
|
|
c--;
|
|
colsOut[c].lastImageValue = image[tmpI] + image[tmpI+1] + image[tmpI+2];
|
|
continue;
|
|
}
|
|
} else {
|
|
// če smo dobili piksel, ki presega blackbar, preverimo do gradientSampleSize dodatnih pikslov.
|
|
// ko dobimo piksel čez imageTreshold oz. gradientSampleSize, izračunamo ali gre za gradient.
|
|
if (colsIn[c].blackFound++ > this.settings.active.arDetect.blackbar.gradientSampleSize) {
|
|
colsIn[c].imageFound = true;
|
|
continue;
|
|
}
|
|
// zatem preverimo, če je piksel presegel mejo, po kateri sklepamo, da
|
|
// predstavlja sliko. Preverimo samo, če smo v stolpcu že presegli
|
|
// blackThreshold
|
|
//
|
|
// then we check whether pixel exceeded imageThreshold
|
|
if (image[tmpI] > this.imageThreshold ||
|
|
image[tmpI + 1] > this.imageThreshold ||
|
|
image[tmpI + 2] > this.imageThreshold ){
|
|
|
|
colsOut[c].image = (i / this.conf.canvasImageDataRowLength)
|
|
|
|
|
|
colsIn[c].imageFound = true;
|
|
edgeDetectCount++;
|
|
}
|
|
|
|
|
|
// shranimo razliko med prejšnjim in trenutnim pikslom za kasnejšo analizo
|
|
// save difference between current and previous pixel for later analysis
|
|
const imageValue = image[tmpI] + image[tmpI+1] + image[tmpI+2];
|
|
colsOut[c].diffs.push(imageValue - colsOut[c].lastImage);
|
|
colsOut[c].lastImageValue = imageValue;
|
|
}
|
|
}
|
|
if(edgeDetectCount >= this.colsThreshold) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for(var i = top; i < bottom; i+= this.conf.canvasImageDataRowLength){
|
|
for(let c = 0; c < colsIn.length; c++){
|
|
if (colsIn[c].blackFound && colsIn[c].imageFound) {
|
|
// če smo našli obe točki, potem ne pregledujemo več.
|
|
// if we found both points, we don't continue anymore
|
|
continue;
|
|
}
|
|
tmpI = i + (colsIn[c].value << 2);
|
|
|
|
// najprej preverimo, če je piksel presegel mejo črnega robu
|
|
// first we check whether blackbarThreshold was exceeded
|
|
if(! colsIn[c].blackFound) {
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
colsOut[c].black = (i / this.conf.canvasImageDataRowLength);
|
|
colsOut[c].col = colsIn[c].value;
|
|
colsIn[c].blackFound = true;
|
|
|
|
// prisili, da se zanka izvede še enkrat ter preveri,
|
|
// ali trenuten piksel preseže tudi imageThreshold
|
|
//
|
|
// force the loop to repeat this step and check whether
|
|
// current pixel exceeds imageThreshold as well
|
|
c--;
|
|
continue;
|
|
}
|
|
} else {
|
|
if (colsIn[c].blackFound++ > this.settings.active.arDetect.blackbar.gradientSampleSize) {
|
|
colsIn[c].imageFound = true;
|
|
continue;
|
|
}
|
|
// zatem preverimo, če je piksel presegel mejo, po kateri sklepamo, da
|
|
// predstavlja sliko. Preverimo samo, če smo v stolpcu že presegli
|
|
// blackThreshold
|
|
//
|
|
// then we check whether pixel exceeded imageThreshold
|
|
if (image[tmpI] > this.imageThreshold ||
|
|
image[tmpI + 1] > this.imageThreshold ||
|
|
image[tmpI + 2] > this.imageThreshold ){
|
|
|
|
colsOut[c].image = (i / this.conf.canvasImageDataRowLength)
|
|
colsIn[c].imageFound = true;
|
|
edgeDetectCount++;
|
|
}
|
|
}
|
|
}
|
|
if(edgeDetectCount >= this.colsThreshold) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
_columnTest(image, top, bottom, colsIn, colsOut, reverseSearchDirection){
|
|
var tmpI;
|
|
if(reverseSearchDirection){
|
|
for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){
|
|
for(var col of colsIn){
|
|
tmpI = i + (col << 2);
|
|
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
var bottom = (i / this.conf.canvasImageDataRowLength) + 1;
|
|
colsOut.push({
|
|
col: col,
|
|
bottom: bottom
|
|
});
|
|
colsIn.splice(colsIn.indexOf(col), 1);
|
|
}
|
|
}
|
|
if(colsIn.length < this.colsThreshold)
|
|
break;
|
|
}
|
|
} else {
|
|
for(var i = top; i < bottom; i+= this.conf.canvasImageDataRowLength){
|
|
for(var col of colsIn){
|
|
tmpI = i + (col << 2);
|
|
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
colsOut.push({
|
|
col: col,
|
|
top: (i / this.conf.canvasImageDataRowLength) - 1
|
|
});
|
|
colsIn.splice(colsIn.indexOf(col), 1);
|
|
}
|
|
}
|
|
if(colsIn.length < this.colsThreshold)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
_columnTest_dbgc(image, top, bottom, colsIn, colsOut, reverseSearchDirection){
|
|
var tmpI;
|
|
if(reverseSearchDirection){
|
|
for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){
|
|
for(var col of colsIn){
|
|
tmpI = i + (col << 2);
|
|
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
var bottom = (i / this.conf.canvasImageDataRowLength) + 1;
|
|
colsOut.push({
|
|
col: col,
|
|
bottom: bottom
|
|
});
|
|
colsIn.splice(colsIn.indexOf(col), 1);
|
|
this.conf.debugCanvas.trace(tmpI,DebugCanvasClasses.EDGEDETECT_CANDIDATE);
|
|
}
|
|
else{
|
|
this.conf.debugCanvas.trace(tmpI, DebugCanvasClasses.EDGEDETECT_ONBLACK);
|
|
}
|
|
}
|
|
if(colsIn.length < this.colsThreshold)
|
|
break;
|
|
}
|
|
} else {
|
|
for(var i = top; i < bottom; i+= this.conf.canvasImageDataRowLength){
|
|
for(var col of colsIn){
|
|
tmpI = i + (col << 2);
|
|
|
|
if( image[tmpI] > this.blackbarThreshold ||
|
|
image[tmpI + 1] > this.blackbarThreshold ||
|
|
image[tmpI + 2] > this.blackbarThreshold ){
|
|
|
|
colsOut.push({
|
|
col: col,
|
|
top: (i / this.conf.canvasImageDataRowLength) - 1
|
|
});
|
|
colsIn.splice(colsIn.indexOf(col), 1);
|
|
this.conf.debugCanvas.trace(tmpI, DebugCanvasClasses.EDGEDETECT_CANDIDATE);
|
|
if(tmpI-1 > 0){
|
|
this.conf.debugCanvas.trace(tmpI - 1, DebugCanvasClasses.EDGEDETECT_CANDIDATE_SECONDARY);
|
|
}
|
|
if(tmpI+1 < image.length){
|
|
this.conf.debugCanvas.trace(tmpI + 1, DebugCanvasClasses.EDGEDETECT_CANDIDATE_SECONDARY);
|
|
}
|
|
} else {
|
|
this.conf.debugCanvas.trace(tmpI, DebugCanvasClasses.EDGEDETECT_ONBLACK);
|
|
}
|
|
}
|
|
if(colsIn.length < this.colsThreshold)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
_blackbarTest(image, start, end){
|
|
for(var i = start; i < end; i += 4){
|
|
if( image[i ] > this.blackbarThreshold ||
|
|
image[i+1] > this.blackbarThreshold ||
|
|
image[i+2] > this.blackbarThreshold ){
|
|
return true;
|
|
}
|
|
}
|
|
return false; // no violation
|
|
}
|
|
|
|
_blackbarTest_dbg(image, start, end){
|
|
for(var i = start; i < end; i += 4){
|
|
if( image[i ] > this.blackbarThreshold ||
|
|
image[i+1] > this.blackbarThreshold ||
|
|
image[i+2] > this.blackbarThreshold ){
|
|
|
|
this.conf.debugCanvas.trace(i, DebugCanvasClasses.VIOLATION)
|
|
return true;
|
|
} else {
|
|
this.conf.debugCanvas.trace(i, DebugCanvasClasses.EDGEDETECT_BLACKBAR)
|
|
}
|
|
}
|
|
return false; // no violation
|
|
}
|
|
|
|
_imageTest(image, start, end, sampleOffset, edgeCandidates){
|
|
var detections = 0;
|
|
|
|
for (var i = start; i < end; i += 4){
|
|
if (image[i ] > this.blackbarThreshold ||
|
|
image[i+1] > this.blackbarThreshold ||
|
|
image[i+2] > this.blackbarThreshold ){
|
|
++detections;
|
|
}
|
|
}
|
|
if(detections >= this.detectionThreshold){
|
|
if(edgeCandidates[sampleOffset] != undefined)
|
|
edgeCandidates[sampleOffset].count++;
|
|
else{
|
|
edgeCandidates[sampleOffset] = {offset: sampleOffset, count: 1};
|
|
edgeCandidates.count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
_imageTest_dbg(image, start, end, sampleOffset, edgeCandidates){
|
|
var detections = 0;
|
|
|
|
for(var i = start; i < end; i += 4){
|
|
if( image[i ] > this.blackbarThreshold ||
|
|
image[i+1] > this.blackbarThreshold ||
|
|
image[i+2] > this.blackbarThreshold ){
|
|
++detections;
|
|
this.conf.debugCanvas.trace(i, DebugCanvasClasses.EDGEDETECT_IMAGE);
|
|
} else {
|
|
this.conf.debugCanvas.trace(i, DebugCanvasClasses.WARN);
|
|
}
|
|
}
|
|
if(detections >= this.detectionThreshold){
|
|
if(edgeCandidates[sampleOffset] != undefined)
|
|
edgeCandidates[sampleOffset].count++;
|
|
else{
|
|
edgeCandidates[sampleOffset] = {offset: sampleOffset, count: 1};
|
|
edgeCandidates.count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
export default EdgeDetect;
|