Rewrote column test, again (todo: actually analyse results)

This commit is contained in:
Tamius Han 2019-05-02 00:57:37 +02:00
parent d51ce8add7
commit eaa1a0975a

View File

@ -539,10 +539,162 @@ class EdgeDetect{
// helper functions // helper functions
// Column tests
// Here's a fun thing. I reckon this bit of code could potentially run often enough that L1/L2 cache misses
// could really start to add up (especially if I figure the RAM usage problem which causes insane RAM usage
// if you run this 30-60 times a second)
//
// so here's two functions. _columnTest3_cross has some optimization that tries to minimize cache misses,
// but the problem is that I don't actually know 100% what I'm doing so it might be pointless. It scans the
// image array line-by-line, rather than column-by-column. This has some advantages (e.g. we can end the
// search for letterbox early), and some disadvantages (the code is a mess)
//
// some time later down the line, I might actually implement _columnTest3_singleCol, which does shit in the
// opposite direction (column-by-column rather than row-by-row)
_columnTest3_cross(image, top, bottom, colsIn, colsOut, reverseSearchDirection) {
// this function is such a /r/badcode bait.
//
// this is the shit we do to avoid function calls and one extra if sentence/code repetition
// pretend I was drunk when I wrote this
let tmpi, lastTmpI = 0, edgeDetectCount = 0, edgeDetectColsLeft = colsIn.length;
let tmpVal = 0;
let increment, arrayStart, arrayEnd;
let loopCond, loopComparator, loopIndex;
if (reverseSearchDirection) {
increment = -this.conf.canvasImageDataRowLength;
arrayStart = bottom - this.conf.canvasImageDataRowLength;
arrayEnd = top;
// this is a hack so we get pointer-like things rather than values
loopCond = {compare: {i: arrayEnd}, index: {i: 0}}
loopComparator = loopCond.index;
loopIndex = loopCond.compare;
} else {
increment = this.conf.canvasImageDataRowLength;
arrayStart = top;
arrayEnd = bottom;
// this is a hack so we get pointer-like things rather than values
loopCond = {compare: {i: arrayEnd}, index: {i: 0}}
loopComparator = loopCond.compare;
loopIndex = loopCond.index;
}
// keep temporary column data in a separate column array:
const colsTmp = new Array(colsIn.length);
for (let i = 0; i < colsTmp.length; i++) {
colsTmp[i] = {
blackFound: false,
imageFound: false, // misleading name — also true if we ran over gradientSampleSize pixels from image
// whether that actually count as an image depends on how aggressive gradientDetection is
lastValue: -1,
diffIndex: 0,
diffs: new Array(this.settings.active.arDetect.blackbar.gradientSampleSize).fill(0)
}
}
// Things to keep in mind: loopCond.index.i is always index.
// loopIndex.i could actually be loopCond.compare.i (comparator) and
// loopComparator.i could actually be loopCond.index.i (real index)
for (loopCond.index.i = arrayStart; loopIndex.i < loopComparator.i; loopCond.index.i += increment) {
// če smo našli toliko mejnih točk, da s preostalimi stolpci ne moremo doseči naše meje, potem prenehamo
// if we found enough edge points so that we couldn't top that limit with remaining columns, then we stop
// searching forward
edgeDetectColsLeft -= edgeDetectCount;
if (edgeDetectColsLeft < this.colsThreshold || edgeDetectCount >= this.colsThreshold) {
break;
}
edgeDetectCount = 0;
// če v eni vrstici dobimo dovolj točk, ki grejo čez našo mejo zaznavanja, potem bomo nehali
// the first line that goes over our detection treshold wins
for (let c = 0; c < colsIn.length; c++) {
// there's really no point in checking this column if we already found image point
if (colsTmp[c].imageFound) {
continue;
}
tmpI = loopCond.index.i + (colsIn[c].value << 2);
// najprej preverimo, če je piksel presegel mejo črnega robu
// first we check whether blackbarThreshold was exceeded
if (! colsTmp[c].blackFound) {
if( image[tmpI] > this.blackbarThreshold ||
image[tmpI + 1] > this.blackbarThreshold ||
image[tmpI + 2] > this.blackbarThreshold ){
colsOut[c].black = ~~(i / this.conf.canvasImageDataRowLength); // note — this value is off by one
colsOut[c].col = colsIn[c].value;
colsTmp[c].blackFound = true;
// prisili, da se zanka izvede še enkrat ter preveri,
// ali trenuten piksel preseže tudi imageThreshold
//
// force the loop to repeat this step and check whether
// current pixel exceeds imageThreshold as well
c--;
continue;
}
} else {
// če smo dobili piksel, ki presega blackbar, preverimo do gradientSampleSize dodatnih pikslov.
// ko dobimo piksel čez imageTreshold oz. gradientSampleSize, nastavimo imageFound. Ali je to veljavno
// bomo preverili v koraku analize, ki sledi kasneje
//
// if we found a pixel that exceeds blackbar, we check up to gradientSampleSize additional pixels.
// when we get a pixel over imageTreshold or gradientSampleSize, we flip the imageFound. We'll bother
// with whether that's legit in analysis step, which will follow soon (tm)
if (image[tmpI] > this.imageThreshold ||
image[tmpI + 1] > this.imageThreshold ||
image[tmpI + 2] > this.imageThreshold ){
colsOut[c].image = ~~(i / this.conf.canvasImageDataRowLength)
colsTmp[c].imageFound = true;
edgeDetectCount++;
}
// v vsakem primeru shranimo razliko med prejšnjim in trenutnim pikslom za kasnejšo analizo
// in any case, save the difference between the current and the previous pixel for later analysis
colsTmp[c].lastValue = image[tmpI] + image[tmpI+1] + image[tmpI+2];
if (colsTmp[c].diffIndex !== 0) {
colsTmp[c].diffs[colsTmp.diffIndex] = colsTmp[c].lastValue - colsTmp[c].diffs[diffIndex - 1];
}
cols[c].diffIndex++;
if (colsTmp[c].diffIndex > this.settings.active.arDetect.blackbar.gradientSampleSize) {
colsTmp[c].imageFound = true;
continue;
}
}
}
}
}
_columnTest3_singleCol(image, top, bottom, colsIn, colsOut, reverseSearchDirection) {
}
_columnTest2(image, top, bottom, colsIn, colsOut, reverseSearchDirection) { _columnTest2(image, top, bottom, colsIn, colsOut, reverseSearchDirection) {
let tmpI; let tmpI;
let lastTmpI = 0;
let edgeDetectCount = 0; let edgeDetectCount = 0;
if(reverseSearchDirection){ for(const c in colsOut) {
c.diffs = [];
}
if (reverseSearchDirection) {
if (this.settings.active.arDetect.blackbar.antiGradientMode === AntiGradientMode.Disabled) {
// todo: remove gradient detection code from this branch
for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){ for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){
for(let c = 0; c < colsIn.length; c++){ for(let c = 0; c < colsIn.length; c++){
if (colsIn[c].blackFound && colsIn[c].imageFound) { if (colsIn[c].blackFound && colsIn[c].imageFound) {
@ -595,6 +747,94 @@ class EdgeDetect{
break; break;
} }
} }
} else {
// anti-gradient detection
for(var i = bottom - this.conf.canvasImageDataRowLength; i >= top; i-= this.conf.canvasImageDataRowLength){
for(let c = 0; c < colsIn.length; c++){
if (colsIn[c].blackFound && colsIn[c].imageFound) {
// če smo našli obe točki, potem ne pregledujemo več.
// if we found both points, we don't continue anymore.
if (colsIn[c].analysisDone) {
continue;
}
if (colsOut[c].diffs.length < 5) {
colsIn[c].analysisDone = true;
}
// average analysis — if steps between pixels are roughly equal, we're looking at a gradient
let sum_avg = 0;
for (let i = 2; i <= colsOut[c].diffs; i++) {
sum_avg += colsOut[c].diffs[i-1] - colsOut[c].diffs[i];
}
sum_avg /= colsOut[c].diffs.length - 2;
for (let i = 2; i <= colsOut[c].diffs; i++) {
sum_avg += colsOut[c].diffs[i-1] - colsOut[c].diffs[i];
}
continue;
}
tmpI = i + (colsIn[c].value << 2);
// najprej preverimo, če je piksel presegel mejo črnega robu
// first we check whether blackbarThreshold was exceeded
if(! colsIn[c].blackFound) {
if( image[tmpI] > this.blackbarThreshold ||
image[tmpI + 1] > this.blackbarThreshold ||
image[tmpI + 2] > this.blackbarThreshold ){
colsOut[c].black = (i / this.conf.canvasImageDataRowLength) - 1;
colsOut[c].col = colsIn[c].value;
colsIn[c].blackFound = 1;
// prisili, da se zanka izvede še enkrat ter preveri,
// ali trenuten piksel preseže tudi imageThreshold
//
// force the loop to repeat this step and check whether
// current pixel exceeds imageThreshold as well
c--;
colsOut[c].lastImageValue = image[tmpI] + image[tmpI+1] + image[tmpI+2];
continue;
}
} else {
// če smo dobili piksel, ki presega blackbar, preverimo do gradientSampleSize dodatnih pikslov.
// ko dobimo piksel čez imageTreshold oz. gradientSampleSize, izračunamo ali gre za gradient.
if (colsIn[c].blackFound++ > this.settings.active.arDetect.blackbar.gradientSampleSize) {
colsIn[c].imageFound = true;
continue;
}
// zatem preverimo, če je piksel presegel mejo, po kateri sklepamo, da
// predstavlja sliko. Preverimo samo, če smo v stolpcu že presegli
// blackThreshold
//
// then we check whether pixel exceeded imageThreshold
if (image[tmpI] > this.imageThreshold ||
image[tmpI + 1] > this.imageThreshold ||
image[tmpI + 2] > this.imageThreshold ){
colsOut[c].image = (i / this.conf.canvasImageDataRowLength)
colsIn[c].imageFound = true;
edgeDetectCount++;
}
// shranimo razliko med prejšnjim in trenutnim pikslom za kasnejšo analizo
// save difference between current and previous pixel for later analysis
const imageValue = image[tmpI] + image[tmpI+1] + image[tmpI+2];
colsOut[c].diffs.push(imageValue - colsOut[c].lastImage);
colsOut[c].lastImageValue = imageValue;
}
}
if(edgeDetectCount >= this.colsThreshold) {
break;
}
}
}
} else { } else {
for(var i = top; i < bottom; i+= this.conf.canvasImageDataRowLength){ for(var i = top; i < bottom; i+= this.conf.canvasImageDataRowLength){
for(let c = 0; c < colsIn.length; c++){ for(let c = 0; c < colsIn.length; c++){